IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.23461.html

Adaptive Multilevel Splitting: First Application to Rare-Event Derivative Pricing

Author

Listed:
  • Riccardo Gozzo

Abstract

This work investigates the computational burden of pricing binary options in rare event regimes and introduces an adaptation of the adaptive multilevel splitting (AMS) method for financial derivatives. Standard Monte Carlo becomes inefficient for deep out-of-the-money binaries due to discontinuous payoffs and extremely small exercise probabilities, requiring prohibitively large sample sizes for accurate estimation. The proposed AMS framework reformulates the rare-event problem as a sequence of conditional events and is applied under both Black-Scholes and Heston dynamics. Numerical experiments cover European, Asian, and up-and-in barrier digital options, together with a multidimensional digital payoff designed as a stress test. Across all contracts, AMS achieves substantial gains, reaching up to 200-fold improvements over standard Monte Carlo, while preserving unbiasedness and showing robust performance with respect to the choice of importance function. To the best of our knowledge, this is the first application of AMS to derivative pricing. An open-source Rcpp implementation is provided, supporting multiple discretisation schemes and alternative importance functions.

Suggested Citation

  • Riccardo Gozzo, 2025. "Adaptive Multilevel Splitting: First Application to Rare-Event Derivative Pricing," Papers 2510.23461, arXiv.org, revised Jan 2026.
  • Handle: RePEc:arx:papers:2510.23461
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.23461
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A Lee & N Whiteley, 2018. "Variance estimation in the particle filter," Biometrika, Biometrika Trust, vol. 105(3), pages 609-625.
    2. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    3. Kleijnen, Jack P.C. & Ridder, A.A.N. & Rubinstein, R.Y., 2010. "Variance Reduction Techniques in Monte Carlo Methods," Discussion Paper 2010-117, Tilburg University, Center for Economic Research.
    4. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    5. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Working Papers hal-02910724, HAL.
    6. Andy Polacek, 2018. "Catastrophe Bonds: A Primer and Retrospective," Chicago Fed Letter, Federal Reserve Bank of Chicago.
    7. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    8. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    9. Casella, Francesco & Bachmann, Bernhard, 2021. "On the choice of initial guesses for the Newton-Raphson algorithm," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    12. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingling Xu & Hongjie Zhang & Fu Lee Wang, 2023. "Pricing of Arithmetic Average Asian Option by Combining Variance Reduction and Quasi-Monte Carlo Method," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
    2. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    3. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    4. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Kenji Hamatani & Masao Fukushima, 2011. "Pricing American options with uncertain volatility through stochastic linear complementarity models," Computational Optimization and Applications, Springer, vol. 50(2), pages 263-286, October.
    8. Tobias Lipp & Grégoire Loeper & Olivier Pironneau, 2013. "Mixing Monte-Carlo and Partial Differential Equations for Pricing Options," Post-Print hal-01558826, HAL.
    9. Capuozzo, Pietro & Panella, Emanuele & Schettini Gherardini, Tancredi & Vvedensky, Dimitri D., 2021. "Path integral Monte Carlo method for option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    10. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    11. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    12. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    13. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    14. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    15. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    16. Zafar Ahmad & Reilly Browne & Rezaul Chowdhury & Rathish Das & Yushen Huang & Yimin Zhu, 2023. "Fast American Option Pricing using Nonlinear Stencils," Papers 2303.02317, arXiv.org, revised Oct 2023.
    17. Süleyman Cengizci & Ömür Uğur, 2025. "A Computational Study for Pricing European- and American-Type Options Under Heston’s Stochastic Volatility Model: Application of the SUPG-YZ $$\beta$$ β Formulation," Computational Economics, Springer;Society for Computational Economics, vol. 66(1), pages 179-206, July.
    18. Antonis Papapantoleon & Jasper Rou, 2024. "A time-stepping deep gradient flow method for option pricing in (rough) diffusion models," Papers 2403.00746, arXiv.org, revised Apr 2025.
    19. Sina Kazemian & Ghazal Farhani & Amirhessam Yazdi, 2025. "An uncertainty-aware physics-informed neural network solution for the Black-Scholes equation: a novel framework for option pricing," Papers 2511.05519, arXiv.org.
    20. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.23461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.