IDEAS home Printed from https://ideas.repec.org/r/spr/climat/v109y2011i1p191-210.html
   My bibliography  Save this item

Simulating the impacts of climate change, prices and population on California’s residential electricity consumption

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
  2. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
  3. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
  4. Zhang, Yue-Jun & Peng, Hua-Rong, 2017. "Exploring the direct rebound effect of residential electricity consumption: An empirical study in China," Applied Energy, Elsevier, vol. 196(C), pages 132-141.
  5. Wang, Yaoping & Bielicki, Jeffrey M., 2018. "Acclimation and the response of hourly electricity loads to meteorological variables," Energy, Elsevier, vol. 142(C), pages 473-485.
  6. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
  7. Derek Lemoine, 2017. "Expect Above Average Temperatures: Identifying the Economic Impacts of Climate Change," NBER Working Papers 23549, National Bureau of Economic Research, Inc.
  8. Zhang, Mingyang & Zhang, Kaiwen & Hu, Wuyang & Zhu, Bangzhu & Wang, Ping & Wei, Yi-Ming, 2020. "Exploring the climatic impacts on residential electricity consumption in Jiangsu, China," Energy Policy, Elsevier, vol. 140(C).
  9. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
  10. Pineau, P.-O. & Dupuis, D.J. & Cenesizoglu, T., 2015. "Assessing the value of power interconnections under climate and natural gas price risks," Energy, Elsevier, vol. 82(C), pages 128-137.
  11. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Sciences Po publications 28, Sciences Po.
  12. Fazeli, Reza & Davidsdottir, Brynhildur & Hallgrimsson, Jonas Hlynur, 2016. "Residential energy demand for space heating in the Nordic countries: Accounting for interfuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1210-1226.
  13. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
  14. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
  15. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
  16. Abubakar Hamid Danlami & Rabiul Islam & Shri Dewi Applanaidu, 2015. "An Analysis of the Determinants of Households’ Energy Choice: A Search for Conceptual Framework," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 197-205.
  17. Rivers, Nicholas & Shaffer, Blake, 2018. "Stretching the Duck's Neck: The effect of climate change on future electricity demand," MPRA Paper 87309, University Library of Munich, Germany.
  18. Ozhegov, Evgeniy & Popova, Evgeniya, 2017. "Demand for electricity and weather conditions: Nonparametric analysis," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 46, pages 55-73.
  19. David Bienvenido-Huertas, 2020. "Analysis of the Impact of the Use Profile of HVAC Systems Established by the Spanish Standard to Assess Residential Building Energy Performance," Sustainability, MDPI, Open Access Journal, vol. 12(17), pages 1-19, September.
  20. Lee, Gi-Eu, 2016. "Temperature Effects are more Complex than Degrees: A Case Study on Residential Energy Consumption," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 242285, Agricultural and Applied Economics Association.
  21. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
  22. Enrica De Cian & Filippo Pavanello & Teresa Randazzo & Malcolm Mistry & Marinella Davide, 2019. "Does climate influence households’ thermal comfort decisions?," Working Papers 2019:02, Department of Economics, University of Venice "Ca' Foscari".
  23. Rapson, David, 2014. "Durable goods and long-run electricity demand: Evidence from air conditioner purchase behavior," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 141-160.
  24. Mohammad Z. Hasan & Ronald A. Ratti, 2015. "Coal Sector Returns and Oil Prices: Developed and Emerging Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 515-524.
  25. Xiaojia Bao, 2016. "Water, Electricity and Weather Variability in Rural Northern China," Working Papers 2014-07-02, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  26. Ge, Fei & Ye, Bin & Xing, Shengnan & Wang, Bao & Sun, Shuang, 2017. "The analysis of the underlying reasons of the inconsistent relationship between economic growth and the consumption of electricity in China – A case study of Anhui province," Energy, Elsevier, vol. 128(C), pages 601-608.
  27. repec:ags:aaea16:235739 is not listed on IDEAS
  28. Qiu, Yueming & Kahn, Matthew E., 2019. "Impact of voluntary green certification on building energy performance," Energy Economics, Elsevier, vol. 80(C), pages 461-475.
  29. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
  30. Baylis, Patrick, 2020. "Temperature and temperament: Evidence from Twitter," Journal of Public Economics, Elsevier, vol. 184(C).
  31. Marilyn Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
  32. Sam Fankhauser, 2016. "Adaptation to climate change," GRI Working Papers 255, Grantham Research Institute on Climate Change and the Environment.
  33. Joshua Graff Zivin & Matthew E. Kahn, 2016. "Industrial Productivity in a Hotter World: The Aggregate Implications of Heterogeneous Firm Investment in Air Conditioning," NBER Working Papers 22962, National Bureau of Economic Research, Inc.
  34. Gouveia, João Pedro & Fortes, Patrícia & Seixas, Júlia, 2012. "Projections of energy services demand for residential buildings: Insights from a bottom-up methodology," Energy, Elsevier, vol. 47(1), pages 430-442.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.