IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2424-d1651777.html
   My bibliography  Save this article

The Compound Heatwave and Drought Event in the Summer of 2022 and the Impacts on the Power System in Southwest China

Author

Listed:
  • Changyi Liu

    (Global Energy Interconnection Group Company Ltd., Beijing 100031, China)

  • Bo Lu

    (National Climate Centre, China Meteorological Administration, Beijing 100081, China)

  • Jie Liu

    (International Business School, Shaanxi Normal University, Xi’an 710119, China)

  • Fang Yang

    (Global Energy Interconnection Group Company Ltd., Beijing 100031, China)

  • Han Jiang

    (Global Energy Interconnection Group Company Ltd., Beijing 100031, China)

  • Zhiyuan Ma

    (Global Energy Interconnection Group Company Ltd., Beijing 100031, China)

  • Qing Liu

    (State Grid Energy Research Institute Co., Ltd., Beijing 102211, China)

  • Jiangtao Li

    (State Grid Energy Research Institute Co., Ltd., Beijing 102211, China)

  • Wenkai Liu

    (College of Science and Technology, China Three Gorges University, Yichang 443002, China)

Abstract

An unprecedented compound heatwave and drought (CHD) event occurred in the summer of 2022 in Southwest China. This extreme climate event posed significant challenges to the power system and highlights the importance of disaster risk management and adaptation to extreme climate events in the power sector. This paper assesses the complementary effects of variations in hydropower, wind, solar power generation and the power load gap in response to this CHD event. The CHD resulted in a remarkable 50% decrease in hydropower generation during the summer of 2022. Similarly, wind speeds in the southwest region slightly decreased from 2.0 m/s in mid-July to 1.7 m/s in early August. On the contrary, solar power generation doubled from mid-July to mid-August. In the summer of 2022, the increase in solar power generation could not compensate for the gap between the dramatically increased cooling demand and the reduced hydropower output. Nevertheless, it highlighted the potential synergy of power source grid load storage and hydro–wind–solar power combinations in addressing future CHD events, and the importance of early-warning for extreme climate events in the new-type power system in the future.

Suggested Citation

  • Changyi Liu & Bo Lu & Jie Liu & Fang Yang & Han Jiang & Zhiyuan Ma & Qing Liu & Jiangtao Li & Wenkai Liu, 2025. "The Compound Heatwave and Drought Event in the Summer of 2022 and the Impacts on the Power System in Southwest China," Energies, MDPI, vol. 18(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2424-:d:1651777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maximilian Auffhammer & Anin Aroonruengsawat, 2012. "Erratum to: Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 113(3), pages 1101-1104, August.
    2. Han, Shuang & Zhang, Lu-na & Liu, Yong-qian & Zhang, Hao & Yan, Jie & Li, Li & Lei, Xiao-hui & Wang, Xu, 2019. "Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio," Applied Energy, Elsevier, vol. 236(C), pages 973-984.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awaworyi Churchill, Sefa & Smyth, Russell & Trinh, Trong-Anh, 2022. "Energy poverty, temperature and climate change," Energy Economics, Elsevier, vol. 114(C).
    2. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    4. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    5. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    6. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    7. Yanqian Li & Yanlai Zhou & Yuxuan Luo & Zhihao Ning & Chong-Yu Xu, 2024. "Boosting the Development and Management of Wind Energy: Self-Organizing Map Neural Networks for Clustering Wind Power Outputs," Energies, MDPI, vol. 17(21), pages 1-15, November.
    8. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    9. Xiaojia Bao, 2016. "Water, Electricity and Weather Variability in Rural Northern China," Working Papers 2014-07-02, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    10. Wang, Han & Yan, Jie & Han, Shuang & Liu, Yongqian, 2020. "Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs," Renewable Energy, Elsevier, vol. 157(C), pages 256-272.
    11. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    12. David Bienvenido-Huertas, 2020. "Analysis of the Impact of the Use Profile of HVAC Systems Established by the Spanish Standard to Assess Residential Building Energy Performance," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    13. Song, Feng & Miao, Xintong & Xia, Fang, 2025. "Fighting climate change together: The regional heterogenous impacts of climate change and potentials of regional power market," Energy Economics, Elsevier, vol. 141(C).
    14. Jakub Jurasz & Jerzy Mikulik & Paweł B. Dąbek & Mohammed Guezgouz & Bartosz Kaźmierczak, 2021. "Complementarity and ‘Resource Droughts’ of Solar and Wind Energy in Poland: An ERA5-Based Analysis," Energies, MDPI, vol. 14(4), pages 1-24, February.
    15. Ge, Fei & Ye, Bin & Xing, Shengnan & Wang, Bao & Sun, Shuang, 2017. "The analysis of the underlying reasons of the inconsistent relationship between economic growth and the consumption of electricity in China – A case study of Anhui province," Energy, Elsevier, vol. 128(C), pages 601-608.
    16. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.
    17. Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
    18. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.
    19. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    20. Cuihui Xia & Tandong Yao & Weicai Wang & Wentao Hu, 2022. "Effect of Climate on Residential Electricity Consumption: A Data-Driven Approach," Energies, MDPI, vol. 15(9), pages 1-20, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2424-:d:1651777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.