IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v44y2023i2p205-240.html

The Thirst for Power: The Impacts of Water Availability on Electricity Generation in China

Author

Listed:
  • Yao An
  • Lin Zhang

Abstract

Economic development under restricted resource availability has become a complex challenge for both developing and well-established economies. To maintain a sustainable electricity supply and mitigate the impact of water shortage on economic development, it is therefore important to understand how utility firms respond to the change in water availability and unpacks the underlying mechanisms of power outage. By pairing plant-level information with the fine-scale grid monthly meteorological data, we find significant plant-level technology substitution in response to water scarcity: a one-standard-deviation decrease in water availability causes an approximate 205 GWh decline per hydro power plant, a 145 GWh increase per nuclear plant, and a 28 GWh increase per coal-fired plant. This water-induced technology substitution takes place within the grid, and we do not identify cross-grid adjustment. Our estimation shows that the technology substitution is associated with a hidden increase in carbon emission up to 32000 tons per year by plant, resulting in an additional cost of 0.18 million USD. Water scarcity slows down the transition towards renewable energy.

Suggested Citation

  • Yao An & Lin Zhang, 2023. "The Thirst for Power: The Impacts of Water Availability on Electricity Generation in China," The Energy Journal, , vol. 44(2), pages 205-240, March.
  • Handle: RePEc:sae:enejou:v:44:y:2023:i:2:p:205-240
    DOI: 10.5547/01956574.44.2.yaan
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.44.2.yaan
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.44.2.yaan?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zheng, Xinzhu & Wang, Can & Cai, Wenjia & Kummu, Matti & Varis, Olli, 2016. "The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change," Applied Energy, Elsevier, vol. 171(C), pages 444-455.
    2. Sun, Chuanwang & Lin, Boqiang, 2013. "Reforming residential electricity tariff in China: Block tariffs pricing approach," Energy Policy, Elsevier, vol. 60(C), pages 741-752.
    3. Paul Behrens & Michelle T. H. van Vliet & Tijmen Nanninga & Brid Walsh & João F. D. Rodrigues, 2017. "Climate change and the vulnerability of electricity generation to water stress in the European Union," Nature Energy, Nature, vol. 2(8), pages 1-7, August.
    4. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    5. Fisher-Vanden, Karen & Mansur, Erin T. & Wang, Qiong (Juliana), 2015. "Electricity shortages and firm productivity: Evidence from China's industrial firms," Journal of Development Economics, Elsevier, vol. 114(C), pages 172-188.
    6. Mathieu Couttenier & Raphael Soubeyran, 2014. "Drought and Civil War In Sub‐Saharan Africa," Economic Journal, Royal Economic Society, vol. 124(575), pages 201-244, March.
      • Couttenier, Mathieu & Hofstetter, Annie & Soubeyran, Raphael, 2013. "Drought and civil war in sub-Saharan Africa," INRAE Sciences Sociales, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2), vol. 2013, pages 1-6, March.
    7. Maximilian Auffhammer & Anin Aroonruengsawat, 2012. "Erratum to: Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 113(3), pages 1101-1104, August.
    8. Peter Debaere, 2014. "The Global Economics of Water: Is Water a Source of Comparative Advantage?," American Economic Journal: Applied Economics, American Economic Association, vol. 6(2), pages 32-48, April.
    9. Judson Boomhower & Lucas Davis, 2020. "Do Energy Efficiency Investments Deliver at the Right Time?," American Economic Journal: Applied Economics, American Economic Association, vol. 12(1), pages 115-139, January.
    10. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2016. "Adaptation to climate-induced regional water constraints in the Spanish energy sector: An integrated assessment," Energy Policy, Elsevier, vol. 97(C), pages 123-135.
    11. Olmstead, Sheila M., 2014. "Climate change adaptation and water resource management: A review of the literature," Energy Economics, Elsevier, vol. 46(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Shenggang & Bao, Ruizhi & Gao, Zhengye, 2025. "Arrival of distant power: The impact of ultra-high voltage transmission projects on energy structure in China," Energy, Elsevier, vol. 316(C).
    2. Xu, Zhongwen & Tan, Shiqi & Yao, Liming & Lv, Chengwei, 2024. "Exploring water-saving potentials of US electric power transition while thirsting for carbon neutrality," Energy, Elsevier, vol. 292(C).
    3. Hao, Xinya & Huang, Yongying & Zhang, Lin, 2025. "High temperature, power rationing, and firm performance," Journal of Development Economics, Elsevier, vol. 176(C).
    4. Jin-Li Hu & Yu-Shih Huang & Chian-Yi You, 2024. "Renewable Energy Generation Efficiency of Asian Economies: An Application of Dynamic Data Envelopment Analysis," Energies, MDPI, vol. 17(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    2. Hao, Xinya & Huang, Yongying & Zhang, Lin, 2025. "High temperature, power rationing, and firm performance," Journal of Development Economics, Elsevier, vol. 176(C).
    3. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    4. Jin, Yi & Scherer, Laura & Sutanudjaja, Edwin H. & Tukker, Arnold & Behrens, Paul, 2022. "Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet," Energy, Elsevier, vol. 245(C).
    5. Li, Haoran & Cui, Xueqin & Hui, Jingxuan & He, Gang & Weng, Yuwei & Nie, Yaoyu & Wang, Can & Cai, Wenjia, 2021. "Catchment-level water stress risk of coal power transition in China under 2℃/1.5℃ targets," Applied Energy, Elsevier, vol. 294(C).
    6. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    7. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    8. Nie, Yan & Zhang, Guoxing & Zhong, Luhao & Su, Bin & Xi, Xi, 2024. "Urban‒rural disparities in household energy and electricity consumption under the influence of electricity price reform policies," Energy Policy, Elsevier, vol. 184(C).
    9. Feng, Qu & Wu, Guiying Laura, 2018. "On the reverse causality between output and infrastructure: The case of China," Economic Modelling, Elsevier, vol. 74(C), pages 97-104.
    10. Awaworyi Churchill, Sefa & Smyth, Russell & Trinh, Trong-Anh, 2022. "Energy poverty, temperature and climate change," Energy Economics, Elsevier, vol. 114(C).
    11. Liu, Chang & Lin, Boqiang, 2020. "Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen," Energy Policy, Elsevier, vol. 138(C).
    12. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    13. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    14. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    15. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    16. Christian Almer & Jeremy Laurent-Lucchetti & Manuel Oechslin, 2014. "Agricultural shocks and riots: A disaggregated analysis," Department of Economics Working Papers 24/14, University of Bath, Department of Economics.
    17. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    18. Cheng, Xiaobin & Liu, Pengfei & Zhu, Lei, 2024. "The impact of electricity market reform on renewable energy production," Energy Policy, Elsevier, vol. 194(C).
    19. Cattaneo, Cristina & Foreman, Timothy, 2023. "Climate change, international migration, and interstate conflicts," Ecological Economics, Elsevier, vol. 211(C).
    20. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:44:y:2023:i:2:p:205-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.