IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkie/228656.html
   My bibliography  Save this paper

Modelling Consumption and Constructing Long-Term Baselines in Final Demand

Author

Listed:
  • Ho, Mun
  • Britz, Wolfgang
  • Delzeit, Ruth
  • Leblanc, Florian
  • Roson, Roberto
  • Schuenemann, Franziska
  • Weitzel, Matthias

Abstract

Modelling and projecting consumption, investment and government demand by detailed commodities in CGE models poses many data and methodological challenges. We review the state of knowledge of modelling consumption of commodities (price and income elasticities and demographics), as well as the historical trends that we should be able to explain. We then discuss the current approaches taken in CGE models to project the trends in demand at various levels of commodity disaggregation. We examine the pros and cons of the various approaches to adjust parameters over time or using functions of time and suggest a research agenda to improve modelling and projection. We compare projections out to 2050 using LES, CES and AIDADS functions in the same CGE model to illustrate the size of the differences. In addition, we briefly discuss the allocation of total investment and government demand to individual commodities.

Suggested Citation

  • Ho, Mun & Britz, Wolfgang & Delzeit, Ruth & Leblanc, Florian & Roson, Roberto & Schuenemann, Franziska & Weitzel, Matthias, 2020. "Modelling Consumption and Constructing Long-Term Baselines in Final Demand," Open Access Publications from Kiel Institute for the World Economy 228656, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkie:228656
    DOI: 10.21642/JGEA.050103AF
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/228656/1/95-823-1-PB.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.21642/JGEA.050103AF?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Wolfgang Britz & Roberto Roson, 2019. "G-RDEM: A GTAP-Based Recursive Dynamic CGE Model for Long-Term Baseline Generation and Analysis," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 50-96, June.
    3. Xiaolin Ren & Matthias Weitzel & Brian C. O’Neill & Peter Lawrence & Prasanth Meiyappan & Samuel Levis & Edward J. Balistreri & Michael Dalton, 2018. "Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS)," Climatic Change, Springer, vol. 146(3), pages 517-531, February.
    4. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    5. Hawkes, Corinna & Harris, Jody & Gillespie, Stuart, 2017. "Changing diets: Urbanization and the nutrition transition," IFPRI book chapters, in: 2017 Global Food Policy Report, chapter 4, pages 34-41, International Food Policy Research Institute (IFPRI).
    6. Shelton, Cameron A., 2007. "The size and composition of government expenditure," Journal of Public Economics, Elsevier, vol. 91(11-12), pages 2230-2260, December.
    7. KERAMIDAS Kimon & DIAZ VAZQUEZ Ana R. & WEITZEL Matthias & VANDYCK Toon & TAMBA Marie & TCHUNG-MING Stephane & SORIA RAMIREZ Antonio & KRAUSE Jette & VAN DINGENEN Rita & SO CHAI Qimin & FU Sha & WEN X, 2020. "Global Energy and Climate Outlook 2019: Electrification for the low-carbon transition," JRC Research Reports JRC119619, Joint Research Centre.
    8. Eddy Bekkers & Alessandro Antimiani & Caitlyn Carrico & Dorothee Flaig & Lionel Fontagne & Jean Foure & Joseph Francois & Ken Itakura & Zornitsa Kutlina-Dimitrova & William Powers & Bert Saveyn & Robe, 2020. "Modelling Trade and Other Economic Interactions Between Countries in Baseline Projections," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 273-345, June.
    9. O'Neill, Brian C. & Ren, Xiaolin & Jiang, Leiwen & Dalton, Michael, 2012. "The effect of urbanization on energy use in India and China in the iPETS model," Energy Economics, Elsevier, vol. 34(S3), pages 339-345.
    10. Canzoneri, Matthew B. & Cumby, Robert E. & Diba, Behzad T., 2007. "Euler equations and money market interest rates: A challenge for monetary policy models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1863-1881, October.
    11. Jing Cao, Mun S. Ho, and Huifang Liang, 2016. "Household energy demand in Urban China: Accounting for regional prices and rapid income change," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    12. Hertel, Thomas & Burke, Marshall & Lobell, David, 2010. "The Poverty Implications of Climate-Induced Crop Yield Changes by 2030," GTAP Working Papers 3196, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    13. Christophe Gouel & Houssein Guimbard, 2019. "Nutrition Transition and the Structure of Global Food Demand," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(2), pages 383-403.
    14. Bennett, Merrill K., 1941. "Wheat in National Diets," Wheat Studies, Stanford University, Food Research Institute, vol. 18(02), pages 1-44, October.
    15. Wolfgang Britz & Dominique van der Mensbrugghe, 2018. "CGEBox: A Flexible, Modular and Extendable Framework for CGE Analysis in GAMS," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(2), pages 106-177, December.
    16. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    17. Deaton,Angus & Muellbauer,John, 1980. "Economics and Consumer Behavior," Cambridge Books, Cambridge University Press, number 9780521296762.
    18. Muhammad, Andrew & Meade, Birgit Gisela Saager, 2011. "International Evidence on Food Consumption Patterns: An Update Using 2005 International Comparison Program Data," Technical Bulletins 120252, United States Department of Agriculture, Economic Research Service.
    19. Jorgeson, Dale W. & Goettle, Richard & Ho, Mun S. & Wilcoxen, Peter, 2013. "Double Dividend: Environmental Taxes and Fiscal Reform in the United States," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262027097, December.
    20. Henri Waisman & Céline Guivarch & Fabio Grazi & Jean Hourcade, 2012. "The I maclim-R model: infrastructures, technical inertia and the costs of low carbon futures under imperfect foresight," Climatic Change, Springer, vol. 114(1), pages 101-120, September.
    21. Federico Perali & Pasquale Lucio Scandizzo (ed.), 2018. "The New Generation of Computable General Equilibrium Models," Springer Books, Springer, number 978-3-319-58533-8, June.
    22. Andreas Chai & Alessio Moneta, 2010. "Retrospectives: Engel Curves," Journal of Economic Perspectives, American Economic Association, vol. 24(1), pages 225-240, Winter.
    23. Schafer, Andreas & Jacoby, Henry D., 2005. "Technology detail in a multisector CGE model: transport under climate policy," Energy Economics, Elsevier, vol. 27(1), pages 1-24, January.
    24. James L. Seale & Anita Regmi, 2006. "Modeling International Consumption Patterns," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 52(4), pages 603-624, December.
    25. Pierre-Andre Chiappori & Maurizio Mazzocco, 2017. "Static and Intertemporal Household Decisions," Journal of Economic Literature, American Economic Association, vol. 55(3), pages 985-1045, September.
    26. Fouquet, Roger, 2014. "Long run demand for energy services: income and price elasticities over two hundred years," LSE Research Online Documents on Economics 59070, London School of Economics and Political Science, LSE Library.
    27. Li, Mengyu & Weng, Yuyan & Duan, Maosheng, 2019. "Emissions, energy and economic impacts of linking China’s national ETS with the EU ETS," Applied Energy, Elsevier, vol. 235(C), pages 1235-1244.
    28. Christophe Gouel & Houssein Guimbard, 2018. "Nutrition Transition and the Structure of Global Food Demand," Post-Print hal-01820555, HAL.
    29. Erwin Corong & Thomas Hertel & Robert McDougall & Marinos Tsigas & Dominique van der Mensbrugghe, 2017. "The Standard GTAP Model, version 7," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 2(1), pages 1-119, June.
    30. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    31. Sommer, Mark & Kratena, Kurt, 2017. "The Carbon Footprint of European Households and Income Distribution," Ecological Economics, Elsevier, vol. 136(C), pages 62-72.
    32. Dixon, Peter B. & Koopman, Robert B. & Rimmer, Maureen T., 2013. "The MONASH Style of Computable General Equilibrium Modeling: A Framework for Practical Policy Analysis," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 23-103, Elsevier.
    33. Keeny, Roman & Hertel, Thomas, 2005. "GTAP-AGR: A Framework for Assessing the Implications of Multilateral Changes in Agricultural Policies," Technical Papers 283422, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    34. Pollak, Robert A & Wales, Terence J, 1981. "Demographic Variables in Demand Analysis," Econometrica, Econometric Society, vol. 49(6), pages 1533-1551, November.
    35. REY LOS SANTOS Luis & WOJTOWICZ Krzysztof & TAMBA Marie & VANDYCK Toon & WEITZEL Matthias & SAVEYN Bert & TEMURSHO Umed, 2018. "Global macroeconomic balances for mid-century climate analyses," JRC Research Reports JRC113981, Joint Research Centre.
    36. Blundell, Richard, 1988. "Consumer Behaviour: Theory and Empirical Evidence--a Survey," Economic Journal, Royal Economic Society, vol. 98(389), pages 16-65, March.
    37. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    38. Hertel, Thomas & Burke, Marshall & Lobell, David, 2010. "The Poverty Implications of Climate-Induced Crop Yield Changes by 2030," GTAP Working Papers 3196, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    39. McDougall, Robert & Alla Golub, 2007. "GTAP-E: A Revised Energy-Environmental Version of the GTAP Model," GTAP Research Memoranda 2959, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    40. Rausch, Sebastian & Metcalf, Gilbert E. & Reilly, John M., 2011. "Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households," Energy Economics, Elsevier, vol. 33(S1), pages 20-33.
    41. Jeffrey Reimer & Thomas Hertel, 2004. "Estimation of International Demand Behaviour for Use with Input-Output Based Data," Economic Systems Research, Taylor & Francis Journals, vol. 16(4), pages 347-366.
    42. William A. Barnett & Ousmane Seck, 2008. "Rotterdam model versus almost ideal demand system: will the best specification please stand up?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(6), pages 795-824.
    43. Jean Foure & Angel Aguiar & Ruben Bibas & Jean Chateau & Shinichiro Fujimori & Julien Lefevre & Marian Leimbach & Luis Rey-Los-Santos & Hugo Valin, 2020. "Macroeconomic Drivers of Baseline Scenarios in Dynamic CGE models: Review and Guidelines Proposal," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 28-62, June.
    44. Hanoch, Giora, 1975. "Production and Demand Models with Direct or Indirect Implicit Additivity," Econometrica, Econometric Society, vol. 43(3), pages 395-419, May.
    45. Bruno Lanz & Thomas F Rutherford, 2016. "GTAPinGAMS: Multiregional and Small Open Economy Models," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 1-77, December.
    46. Roger Fouquet, 2014. "Editor's Choice Long-Run Demand for Energy Services: Income and Price Elasticities over Two Hundred Years," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 186-207.
    47. Melnikov, Nikolai B. & O’Neill, Brian C. & Dalton, Michael G. & van Ruijven, Bas J., 2017. "Downscaling heterogeneous household outcomes in dynamic CGE models for energy-economic analysis," Energy Economics, Elsevier, vol. 65(C), pages 87-97.
    48. Bednar-Friedl, Birgit & Schinko, Thomas & Steininger, Karl W., 2012. "The relevance of process emissions for carbon leakage: A comparison of unilateral climate policy options with and without border carbon adjustment," Energy Economics, Elsevier, vol. 34(S2), pages 168-180.
    49. Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-730, May.
    50. Yu, Wusheng & Hertel, Thomas W. & Preckel, Paul V. & Eales, James S., 2004. "Projecting world food demand using alternative demand systems," Economic Modelling, Elsevier, vol. 21(1), pages 99-129, January.
    51. P. Capros & Denise Van Regemorter & Leonidas Paroussos & P. Karkatsoulis & C. Fragkiadakis & S. Tsani & I. Charalampidis & Tamas Revesz, 2013. "GEM-E3 Model Documentation," JRC Research Reports JRC83177, Joint Research Centre.
    52. Congressional Budget Office, 2018. "CBO’s Projection of Labor Force Participation Rates: Working Paper 2018-04," Working Papers 53616, Congressional Budget Office.
    53. Luc Savard, 2010. "Using an Almost Ideal Demand System in a Macro-Micro Modelling Context to Analyse Poverty and Inequalities," Cahiers de recherche 10-04, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    54. Alessio Moneta & Andreas Chai, 2010. "The evolution of Engel curves and its implications for structural change," Discussion Papers in Economics economics:201009, Griffith University, Department of Accounting, Finance and Economics.
    55. Angel Aguiar & Maksym Chepeliev & Erwin L. Corong & Robert McDougall & Dominique van der Mensbrugghe, 2019. "The GTAP Data Base: Version 10," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yaxin & Shan, Yuli & Zheng, Xinzhu & Wang, Can & Guan, Yuru & Yan, Jin & Ruzzenenti, Franco & Hubacek, Klaus, 2023. "Energy price shocks induced by the Russia-Ukraine conflict jeopardize wellbeing," Energy Policy, Elsevier, vol. 182(C).
    2. Wilts, Rienne & Britz, Wolfgang, 2022. "Quantifying SDG indicators for multiple SSPs up to 2050 with a focus on selected low and low-middle income countries and the bio-economy based on CGE analysis," Conference papers 333473, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Freire-González, Jaume & Ho, Mun S., 2022. "Policy strategies to tackle rebound effects: A comparative analysis," Ecological Economics, Elsevier, vol. 193(C).
    4. Britz, Wolfgang & Jafari, Yaghoob & Nekhay, Olexandr & Roson, Roberto, 2022. "Assessing inequality and poverty in long-term growth projections: A general equilibrium analysis for six developing countries," Economic Modelling, Elsevier, vol. 117(C).
    5. Haddad, Salwa & Escobar, Neus & Bruckner, Martin & Britz, Wolfgang, 2022. "Promoting extensive cattle production in the European Union has major implications for global agricultural trade and climate change," Discussion Papers 324710, University of Bonn, Institute for Food and Resource Economics.
    6. Jean Foure & Angel Aguiar & Ruben Bibas & Jean Chateau & Shinichiro Fujimori & Julien Lefevre & Marian Leimbach & Luis Rey-Los-Santos & Hugo Valin, 2020. "Macroeconomic Drivers of Baseline Scenarios in Dynamic CGE models: Review and Guidelines Proposal," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 28-62, June.
    7. Mukashov, A., 2023. "Parameter uncertainty in policy planning models: Using portfolio management methods to choose optimal policies under world market volatility," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 187-202.
    8. Jean Chateau & Erwin Corong & Elisa Lanzi & Caitlyn Carrico & Jean Fouré & David Laborde, 2020. "Characterizing Supply-Side Drivers of Structural Change in the Construction of Economic Baseline Projections," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 109-161, June.
    9. Clements, Kenneth & Mariano, Marc Jim & Verikios, George, 2022. "Expenditure patterns, heterogeneity, and long-term structural change," Economic Modelling, Elsevier, vol. 113(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    2. Britz, Wolfgang & Jafari, Yaghoob & Nekhay, Olexandr & Roson, Roberto, 2022. "Assessing inequality and poverty in long-term growth projections: A general equilibrium analysis for six developing countries," Economic Modelling, Elsevier, vol. 117(C).
    3. Wolfgang Britz & Yaghoob Jafari & Alexandr Nekhay & Roberto Roson, 2020. "Modeling Trade and Income Distribution in Six Developing Countries A dynamic general equilibrium analysis up to the year 2050," Working Papers 2020:03, Department of Economics, University of Venice "Ca' Foscari".
    4. Clements, Kenneth W. & Gao, Grace, 2015. "The Rotterdam demand model half a century on," Economic Modelling, Elsevier, vol. 49(C), pages 91-103.
    5. Wolfgang Britz & Roberto Roson, 2019. "G-RDEM: A GTAP-Based Recursive Dynamic CGE Model for Long-Term Baseline Generation and Analysis," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 50-96, June.
    6. Rob Dellink & Dominique Van der Mensbrugghe & Bert Saveyn, 2020. "Shaping Baseline Scenarios of Economic Activity with CGE Models: Introduction to the Special Issue," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 1-27, June.
    7. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    8. Wolfgang Britz & Roberto Roson & Martina Sartori, 2019. "SSP Long Run Scenarios for European NUTS2 Regions," Working Papers 2019: 22, Department of Economics, University of Venice "Ca' Foscari".
    9. Ruth Delzeit & Roberto Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel , 2020. "Linking global CGE models with sectoral models to generate baseline scenarios: Approaches, opportunities and pitfalls," Post-Print hal-03128285, HAL.
    10. Christophe Gouel & Houssein Guimbard, 2019. "Nutrition Transition and the Structure of Global Food Demand," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(2), pages 383-403.
    11. Ole Boysen, 2019. "When does specification or aggregation across consumers matter for economic impact analysis models? An investigation into demand systems," Empirical Economics, Springer, vol. 56(1), pages 137-172, January.
    12. Jean Chateau & Erwin Corong & Elisa Lanzi & Caitlyn Carrico & Jean Fouré & David Laborde, 2020. "Characterizing Supply-Side Drivers of Structural Change in the Construction of Economic Baseline Projections," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 109-161, June.
    13. KERAMIDAS Kimon & FOSSE Florian & DIAZ VAZQUEZ Ana & DOWLING Paul & GARAFFA Rafael & DESPRÉS Jacques & RUSS Hans Peter & SCHADE Burkhard & SCHMITZ Andreas & SORIA RAMIREZ Antonio & VANDYCK Toon & WEIT, 2021. "Global Energy and Climate Outlook 2021: Advancing towards climate neutrality," JRC Research Reports JRC126767, Joint Research Centre.
    14. Campagnolo, Lorenza & De Cian, Enrica, 2022. "Distributional consequences of climate change impacts on residential energy demand across Italian households," Energy Economics, Elsevier, vol. 110(C).
    15. Hu, Wenhao & Ho, Mun S. & Cao, Jing, 2019. "Energy consumption of urban households in China," China Economic Review, Elsevier, vol. 58(C).
    16. Wilts, Rienne & Latka, Catharina & Britz, Wolfgang, 2020. "Who is Most Vulnerable to Climate Change Induced Yield Changes? A Dynamic Long Run Household Analysis in Lower Income Countries," Discussion Papers 305631, University of Bonn, Institute for Food and Resource Economics.
    17. Winchester, Niven & White, Dominic, 2022. "The Climate PoLicy ANalysis (C-PLAN) Model, Version 1.0," Energy Economics, Elsevier, vol. 108(C).
    18. Bouët, Antoine & Femenia, Fabienne & Laborde, David, 2014. "On the role of demand systems in CGE simulations of trade reforms," Conference papers 332443, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Clora, Francesco & Yu, Wusheng, 2022. "GHG emissions, trade balance, and carbon leakage: Insights from modeling thirty-one European decarbonization pathways towards 2050," Energy Economics, Elsevier, vol. 113(C).
    20. Ruth Delzeit & Robert Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel &, 2020. "Linking Global CGE Models with Sectoral Models to Generate Baseline Scenarios: Approaches, Challenges, and Opportunities," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 162-195, June.

    More about this item

    Keywords

    Consumption demand systems; Long-term baseline; CGE models;
    All these keywords.

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkie:228656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.