IDEAS home Printed from
   My bibliography  Save this article

Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS)


  • Xiaolin Ren

    () (National Center for Atmospheric Research)

  • Matthias Weitzel

    (National Center for Atmospheric Research)

  • Brian C. O’Neill

    (National Center for Atmospheric Research)

  • Peter Lawrence

    (National Center for Atmospheric Research)

  • Prasanth Meiyappan

    (University of Illinois)

  • Samuel Levis

    (The Climate Corporation)

  • Edward J. Balistreri

    (Colorado School of Mines)

  • Michael Dalton

    (National Oceanic and Atmospheric Administration (NOAA))


Crop yields are vulnerable to climate change. We assess the global impacts of climate change on agricultural systems under two climate projections (RCP8.5 and RCP4.5) to quantify the difference in impacts if climate change were reduced. We also employ two different socioeconomic pathways (SSP3 and SSP5) to assess the sensitivity of results to the underlying socioeconomic conditions. The integrated-Population-Economy-Technology-Science (iPETS) model, a global integrated assessment model for projecting future energy use, land use and emissions, is used in conjunction with the Community Earth System Model (CESM), and particularly its land surface component, the Community Land Model (CLM), to evaluate climate change impacts on agriculture. iPETS results are produced at the level of nine world regions for the period 2005–2100. We employ climate impacts on crop yield derived from CLM, driven by CESM simulations of the two RCPs. These yield effects are applied within iPETS, imposed on baseline and mitigation scenarios for SSP3 and SSP5 that are consistent with the RCPs. We find that the reduced level of warming in RCP4.5 (relative to RCP8.5) can have either positive or negative effects on the economy since crop yield either increases or decreases with climate change depending on assumptions about CO2 fertilization. Yields are up to 12 % lower, and crop prices are up to 15 % higher, in RCP4.5 relative to RCP8.5 if CO2 fertilization is included, whereas yields are up to 22 % higher, and crop prices up to 22 % lower, if it is not. We also find that in the mitigation scenarios (RCP4.5), crop prices are substantially affected by mitigation actions as well as by climate impacts. For the scenarios we evaluated, the development pathway (SSP3 vs SSP5) has a larger impact on outcomes than climate (RCP4.5 vs RCP8.5), by a factor of 3 for crop prices, 11 for total cropland use, and 35 for GDP on global average.

Suggested Citation

  • Xiaolin Ren & Matthias Weitzel & Brian C. O’Neill & Peter Lawrence & Prasanth Meiyappan & Samuel Levis & Edward J. Balistreri & Michael Dalton, 2018. "Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS)," Climatic Change, Springer, vol. 146(3), pages 517-531, February.
  • Handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1791-1
    DOI: 10.1007/s10584-016-1791-1

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    2. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    3. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    4. Meiyappan, Prasanth & Dalton, Michael & O’Neill, Brian C. & Jain, Atul K., 2014. "Spatial modeling of agricultural land use change at global scale," Ecological Modelling, Elsevier, vol. 291(C), pages 152-174.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Mun Ho & Wolfgang Britz & Ruth Delzeit & Florian Leblanc & Roberto Roson & Franziska Schuenemann & Matthias Weitzel, 2020. "Modelling Consumption and Constructing Long-Term Baselines in Final Demand," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 63-108, June.
    2. Shinichiro Fujimori & Toshichika Iizumi & Tomoko Hasegawa & Jun’ya Takakura & Kiyoshi Takahashi & Yasuaki Hijioka, 2018. "Macroeconomic Impacts of Climate Change Driven by Changes in Crop Yields," Sustainability, MDPI, Open Access Journal, vol. 10(10), pages 1-1, October.
    3. Matthias Weitzel & Edward J. Balistreri & Brian C O'Neill & Xiaolin Ren, 2019. "A GAMS/MPSGE implementation of the PET model," Center for Agricultural and Rural Development (CARD) Publications 19-wp593, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    4. Nayab Khalid & Ayesha Siddiqa & Sheraz Ahmad Ch & Khalid Zaman, 2018. "Impact of Agriculture Sector Development on Economic Growth: Application of Robust Linear Least Squares Regression on Pakistan’s Data Set," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 14(4), pages 631-641, AUGUST.
    5. N. M. Svetlov & S. O. Siptits & I. A. Romanenko & N. E. Evdokimova, 2019. "The Effect of Climate Change on the Location of Branches of Agriculture in Russia," Studies on Russian Economic Development, Springer, vol. 30(4), pages 406-418, July.
    6. Mfaniseni Wiseman Mbatha & Mfundo Mandla Masuku, 2018. "Small-Scale Agriculture as a Panacea in Enhancing South African Rural Economies," Journal of Economics and Behavioral Studies, AMH International, vol. 10(6), pages 33-41.
    7. Salvi Asefi-Najafabady & Karen L Vandecar & Anton Seimon & Peter Lawrence & Deborah Lawrence, 2018. "Climate change, population, and poverty: vulnerability and exposure to heat stress in countries bordering the Great Lakes of Africa," Climatic Change, Springer, vol. 148(4), pages 561-573, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, María & Ramos, Fabien & Van Doorslaer, Benjamin & Martínez, Pilar & Fumagalli, Davide & Ceglar, Andrej & Fernández, Francisco J., 2017. "Climate change impacts on EU agriculture: A regionalized perspective taking into account market-driven adjustments," Agricultural Systems, Elsevier, vol. 156(C), pages 52-66.
    2. Food and Agricultural Organization [FAO], 2016. "Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade," Working Papers id:8512, eSocialSciences.
    3. Fernández, Francisco J. & Blanco, Maria, 2015. "Modelling the economic impacts of climate change on global and European agriculture: Review of economic structural approaches," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 9, pages 1-53.
    4. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    5. H. Charles J. Godfray & Sherman Robinson, 2015. "Contrasting approaches to projecting long-run global food security," Oxford Review of Economic Policy, Oxford University Press, vol. 31(1), pages 26-44.
    6. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    7. Marcos-Martinez, Raymundo & Bryan, Brett A. & Schwabe, Kurt A. & Connor, Jeffery D. & Law, Elizabeth A. & Nolan, Martin & Sánchez, José J., 2019. "Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change," Ecosystem Services, Elsevier, vol. 37(C), pages 1-1.
    8. Dumortier, Jerome & Carriquiry, Miguel A. & Elobeid, Amani E., 2020. "Impact of Climate Change on Global Agricultural Markets under Different Shared Socioeconomic Pathways," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304390, Agricultural and Applied Economics Association.
    9. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    10. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    11. Nelson, Gerald C. & van der Mensbrugghe, Dominique, 2014. "Public sector agricultural research priorities for sustainable food security: Perspectives from plausible scenarios:," IFPRI discussion papers 1339, International Food Policy Research Institute (IFPRI).
    12. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Working Papers JRC106835, Joint Research Centre (Seville site).
    13. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    14. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.
    15. Simon Dietz & Bruno Lanz, 2019. "Can a Growing World Be Fed When the Climate Is Changing?," CESifo Working Paper Series 7986, CESifo.
    16. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    17. Hermann Lotze-Campen & Martin Lampe & Page Kyle & Shinichiro Fujimori & Petr Havlik & Hans Meijl & Tomoko Hasegawa & Alexander Popp & Christoph Schmitz & Andrzej Tabeau & Hugo Valin & Dirk Willenbocke, 2014. "Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 103-116, January.
    18. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    19. Wiebe, Keith & Sulser, Timothy B & Dunston, Shahnila & Rosegrant, Mark W. & Fuglie, Keith & Willenbockel, Dirk & Nelson, Gerald C., 2020. "Modeling impacts of faster productivity growth to inform the CGIAR initiative on Crops to End Hunger," SocArXiv h2g6r, Center for Open Science.
    20. Christoph Müller & Richard D. Robertson, 2014. "Projecting future crop productivity for global economic modeling," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 37-50, January.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1791-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.