IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03128285.html
   My bibliography  Save this paper

Linking global CGE models with sectoral models to generate baseline scenarios: Approaches, opportunities and pitfalls

Author

Listed:
  • Ruth Delzeit
  • Roberto Beach
  • Ruben Bibas

    (OCDE - Organisation de Coopération et de Développement Economiques = Organisation for Economic Co-operation and Development)

  • Wolfgang Britz
  • Jean Chateau

    (OCDE - Organisation de Coopération et de Développement Economiques = Organisation for Economic Co-operation and Development)

  • Florian Freund
  • Julien Lefevre

    (CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique)

  • Franziska Schuenemann
  • Timothy Sulser
  • Hugo Valin
  • Bas van Ruijven
  • Matthias Weitzel
  • Dirk Willenbockel
  • Krzysztof Wojtowicz

Abstract

When modelling medium and long-term challenges we need a reference path of economic development (the so-called baseline). Because sectoral models often offer a more fundamental understanding of future developments for specific sectors, many CGE modeling teams have adopted different kinds of linking approaches to sectoral models to generate baselines. We systematically compare and discuss approaches of linking CGE models for the baseline calibration procedure, and discuss best practices and pitfalls. We identify different types of linking approaches which we divide into a) links with partial equilibrium models, and b) links with non-economic models. These two types of linking approaches are then analyzed with respect to e.g. the degree of linkage, information exchanged, as well as compromises in aggregations and definitions. Based on this, we discuss potential drawbacks and conclude with suggestions for best practices and research recommendations.

Suggested Citation

  • Ruth Delzeit & Roberto Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel , 2020. "Linking global CGE models with sectoral models to generate baseline scenarios: Approaches, opportunities and pitfalls," Post-Print hal-03128285, HAL.
  • Handle: RePEc:hal:journl:hal-03128285
    DOI: 10.21642/JGEA.050105AF
    Note: View the original document on HAL open archive server: https://hal.science/hal-03128285
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03128285/document
    Download Restriction: no

    File URL: https://libkey.io/10.21642/JGEA.050105AF?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kamel Louhichi & Hugo Valin, 2012. "Impact of EU biofuel policies on the French arable sector: A micro-level analysis using global market and farm-based supply models," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 93(3), pages 233-272.
    2. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    3. Krook-Riekkola, Anna & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2017. "Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model," Energy, Elsevier, vol. 141(C), pages 803-817.
    4. Henseler, Martin & Piot-Lepetit, Isabelle & Ferrari, Emanuele & Mellado, Aida Gonzalez & Banse, Martin & Grethe, Harald & Parisi, Claudia & Hélaine, Sophie, 2013. "On the asynchronous approvals of GM crops: Potential market impacts of a trade disruption of EU soy imports," Food Policy, Elsevier, vol. 41(C), pages 166-176.
    5. Wolf, Verena & Deppermann, Andre & Tabeau, Andrzej & Banse, Martin & van Berkum, Siemen & Haß, Marlen & Havlik, Petr & Philippidis, George & Salamon, Petra & Verma, Monika, 2016. "Linking three market models to project Russian and Ukrainian wheat markets till 2030," 155th Seminar, September 19-21, 2016, Kiev, Ukraine 245878, European Association of Agricultural Economists.
    6. Jansson, Torbjorn & Kuiper, Marijke H. & Adenauer, Marcel, 2009. "Linking CAPRI and GTAP," Reports 57912, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    7. Henri Waisman & Céline Guivarch & Fabio Grazi & Jean Hourcade, 2012. "The I maclim-R model: infrastructures, technical inertia and the costs of low carbon futures under imperfect foresight," Climatic Change, Springer, vol. 114(1), pages 101-120, September.
    8. Schafer, Andreas & Jacoby, Henry D., 2005. "Technology detail in a multisector CGE model: transport under climate policy," Energy Economics, Elsevier, vol. 27(1), pages 1-24, January.
    9. Pedro R. R. Rochedo & Britaldo Soares-Filho & Roberto Schaeffer & Eduardo Viola & Alexandre Szklo & André F. P. Lucena & Alexandre Koberle & Juliana Leroy Davis & Raoni Rajão & Regis Rathmann, 2018. "The threat of political bargaining to climate mitigation in Brazil," Nature Climate Change, Nature, vol. 8(8), pages 695-698, August.
    10. Robert M'barek & Jesus Barreiro-Hurle & Pierre Boulanger & Arnaldo Caivano & Pavel Ciaian & Hasan Dudu & Maria Espinosa Goded & Thomas Fellmann & Emanuele Ferrari & Sergio Gomez Y Paloma & Celso Gorri, 2017. "Scenar 2030 - Pathways for the European agriculture and food sector beyond 2020," JRC Research Reports JRC108449, Joint Research Centre.
    11. REY LOS SANTOS Luis & WOJTOWICZ Krzysztof & TAMBA Marie & VANDYCK Toon & WEITZEL Matthias & SAVEYN Bert & TEMURSHO Umed, 2018. "Global macroeconomic balances for mid-century climate analyses," JRC Research Reports JRC113981, Joint Research Centre.
    12. Yunfa Zhu & Madanmohan Ghosh & Deming Luo & Nick Macaluso & Jacob Rattray, 2018. "Revenue Recycling And Cost Effective Ghg Abatement: An Exploratory Analysis Using A Global Multi-Sector Multi-Region Cge Model," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-25, February.
    13. Delzeit, Ruth & Klepper, Gernot & Zabel, Florian & Mauser, Wolfram, 2018. "Global economic–biophysical assessment of midterm scenarios for agricultural markets—biofuel policies, dietary patterns, cropland expansion, and productivity growth," Open Access Publications from Kiel Institute for the World Economy 226014, Kiel Institute for the World Economy (IfW Kiel).
    14. Claudia Ringler & Dirk Willenbockel & Nicostrato Perez & Mark Rosegrant & Tingju Zhu & Nathanial Matthews, 2016. "Global linkages among energy, food and water: an economic assessment," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 161-171, March.
    15. Jean Foure & Angel Aguiar & Ruben Bibas & Jean Chateau & Shinichiro Fujimori & Julien Lefevre & Marian Leimbach & Luis Rey-Los-Santos & Hugo Valin, 2020. "Macroeconomic Drivers of Baseline Scenarios in Dynamic CGE models: Review and Guidelines Proposal," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 28-62, June.
    16. Britz, Wolfgang, 2008. "Automated model linkages: the example of CAPRI," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 57(08), pages 1-5.
    17. Robert M'barek & Jesus Barreiro-Hurle & Pierre Boulanger & Arnaldo Caivano & Pavel Ciaian & Hasan Dudu & Maria Espinosa Goded & Thomas Fellmann & Emanuele Ferrari & Sergio Gomez Y Paloma & Celso Gorri, 2017. "Scenar 2030 - Pathways for the European agriculture and food sector beyond 2020 (Summary report)," JRC Research Reports JRC109053, Joint Research Centre.
    18. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    19. Böhringer, Christoph & Rutherford, Thomos F., 2009. "Integrated assessment of energy policies: Decomposing top-down and bottom-up," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1648-1661, September.
    20. Janine Pelikan & Wolfgang Britz & Thomas W. Hertel, 2015. "Green Light for Green Agricultural Policies? An Analysis at Regional and Global Scales," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(1), pages 1-19, February.
    21. Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
    22. John Weyant & Elmar Kriegler, 2014. "Preface and introduction to EMF 27," Climatic Change, Springer, vol. 123(3), pages 345-352, April.
    23. Wolfram Mauser & Gernot Klepper & Florian Zabel & Ruth Delzeit & Tobias Hank & Birgitta Putzenlechner & Alvaro Calzadilla, 2015. "Global biomass production potentials exceed expected future demand without the need for cropland expansion," Nature Communications, Nature, vol. 6(1), pages 1-11, December.
    24. Shinichiro Fujimori & Ken Oshiro & Hiroto Shiraki & Tomoko Hasegawa, 2019. "Energy transformation cost for the Japanese mid-century strategy," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    25. Ringler, C. & Willenbockel, D. & Perez, N. & Rosegrant, M. & Zhu, T. & Matthews, Nathanial, "undated". "Global linkages among energy, food and water: an economic assessment," Papers published in Journals (Open Access) H047781, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jafari, Yaghoob & Engemann, Helena & Heckelei, Thomas & Hainsch, Karlo, 2023. "National and Regional Economic Impacts of changes in Germany's electricity mix: A dynamic analysis through 2050," Utilities Policy, Elsevier, vol. 82(C).
    2. Clora, Francesco & Yu, Wusheng, 2022. "GHG emissions, trade balance, and carbon leakage: Insights from modeling thirty-one European decarbonization pathways towards 2050," Energy Economics, Elsevier, vol. 113(C).
    3. Luyuan Xu & Wei Wang, 2021. "A Quantitative Relationship Analysis of Industry Shifts and Trade Restructuring in ASEAN Based on Multiregional Computable General Equilibrium Models," Complexity, Hindawi, vol. 2021, pages 1-12, February.
    4. KERAMIDAS Kimon & FOSSE Florian & DIAZ VAZQUEZ Ana & DOWLING Paul & GARAFFA Rafael & DESPRÉS Jacques & RUSS Hans Peter & SCHADE Burkhard & SCHMITZ Andreas & SORIA RAMIREZ Antonio & VANDYCK Toon & WEIT, 2021. "Global Energy and Climate Outlook 2021: Advancing towards climate neutrality," JRC Research Reports JRC126767, Joint Research Centre.
    5. Franck Lecocq & Alain Nadaï & Christophe Cassen, 2022. "Getting models and modellers to inform deep decarbonization strategies," Climate Policy, Taylor & Francis Journals, vol. 22(6), pages 695-710, July.
    6. Tchoffo, Rodrigue, 2021. "Design of a Covid-19 model for environmental impact: From the partial equilibrium to the Computable General Equilibrium model," MPRA Paper 108920, University Library of Munich, Germany, revised 27 Jul 2021.
    7. Frankovic, Ivan, 2022. "The impact of carbon pricing in a multi-region production network model and an application to climate scenarios," Discussion Papers 07/2022, Deutsche Bundesbank.
    8. Weitzel, Matthias & Vandyck, Toon & Rey Los Santos, Luis & Tamba, Marie & Temursho, Umed & Wojtowicz, Krzysztof, 2023. "A comprehensive socio-economic assessment of EU climate policy pathways," Ecological Economics, Elsevier, vol. 204(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruth Delzeit & Robert Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel &, 2020. "Linking Global CGE Models with Sectoral Models to Generate Baseline Scenarios: Approaches, Challenges, and Opportunities," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 162-195, June.
    2. Mun Ho & Wolfgang Britz & Ruth Delzeit & Florian Leblanc & Roberto Roson & Franziska Schuenemann & Matthias Weitzel, 2020. "Modelling Consumption and Constructing Long-Term Baselines in Final Demand," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 63-108, June.
    3. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    4. William Wills & Emilio Lebre La Rovere & Carolina Grottera & Giovanna Ferrazzo Naspolini & Gaëlle Le Treut & F. Ghersi & Julien Lefèvre & Carolina Burle Schmidt Dubeux, 2022. "Economic and social effectiveness of carbon pricing schemes to meet Brazilian NDC targets," Post-Print hal-03500923, HAL.
    5. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.
    6. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    7. Martin Henseler & Ruth Delzeit & Marcel Adenäuer & Sarah Baum & Peter Kreins, 2020. "Nitrogen Tax and Set-Aside as Greenhouse Gas Abatement Policies Under Global Change Scenarios: A Case Study for Germany," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 299-329, July.
    8. Labriet, Maryse & Drouet, Laurent & Vielle, Marc & Loulou, Richard & Kanudia, Amit & Haurie, Alain, 2015. "Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models," Climate Change and Sustainable Development 199946, Fondazione Eni Enrico Mattei (FEEM).
    9. Pisciella, Paolo & van Beesten, E. Ruben & Tomasgard, Asgeir, 2023. "Efficient coordination of top-down and bottom-up models for energy system design: An algorithmic approach," Energy, Elsevier, vol. 284(C).
    10. Olegs Krasnopjorovs & Daniels Jukna & Konstantins Kovalovs, 2022. "On the Use of General Equilibrium Model to Assess the Impact of Climate Policy in Latvia," Post-Print hal-03861139, HAL.
    11. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "From linking to integration of energy system models and computational general equilibrium models – Effects on equilibria and convergence," Energy, Elsevier, vol. 159(C), pages 1218-1233.
    12. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    13. Martin T. Ross, Patrick T. Sullivan, Allen A. Fawcett, and Brooks M. Depro, 2014. "Investigating Technology Options for Climate Policies: Differentiated Roles in ADAGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    14. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    15. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    16. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    17. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).
    18. Stefan Nabernegg & Birgit Bednar-Friedl & Fabian Wagner & Thomas Schinko & Janusz Cofala & Yadira Mori Clement, 2017. "The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India," Energies, MDPI, vol. 10(3), pages 1-26, March.
    19. Jean Chateau & Erwin Corong & Elisa Lanzi & Caitlyn Carrico & Jean Fouré & David Laborde, 2020. "Characterizing Supply-Side Drivers of Structural Change in the Construction of Economic Baseline Projections," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 109-161, June.
    20. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03128285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.