IDEAS home Printed from https://ideas.repec.org/p/ags/ubfred/324710.html
   My bibliography  Save this paper

Promoting extensive cattle production in the European Union has major implications for global agricultural trade and climate change

Author

Listed:
  • Haddad, Salwa
  • Escobar, Neus
  • Bruckner, Martin
  • Britz, Wolfgang

Abstract

This paper assesses the potential market-mediated impacts, including global Land Use Change (LUC) and GHG emissions, from increased subsidies to pastureland-based livestock sectors in the EU, through a “tax recycling strategy” simulated against a baseline under SSP2 up to 2030. The budget neutral increase in the level of pastureland subsidy rates in different Member States is achieved by a decrease in land subsidies to other cropping activities. We employ an integrated CGE-MRIO approach, in which we link a recursive dynamic version of the well-known GTAP-CGE model, called GTAP-RDEM to the FABIO MRIO. This approach allows to take advantages from both methods. FABIO offers better resolution with regards to agricultural sectors than in the GTAP database, while the combined use of this MRIO with a CGE model allows to consider price and income dependent feedbacks, required for policy analyses and long run assessments of changes in the global economy. Results show that the redistribution of land-based subsidies provokes significant changes in agricultural markets across the EU. Pastureland areas and cattle production increases in almost all EU Member States, whereas crop land and crop production decreases. The resulting increase in crop prices translates into reduced output of intensive animal production sector, mainly pig and poultry, which rely on concentrate feed to a larger extent compared to cattle. As a result of the decrease in cropland area and overall crop production in the EU, most EU countries increase imports of grain, oilseeds, and cakes from major agricultural producers, essentially soybean cake from Brazil and North America. This generates significant LUC and related GHG emissions that spill outside the EU, mainly in major feed exporters while some emission saving is observed at global level.

Suggested Citation

  • Haddad, Salwa & Escobar, Neus & Bruckner, Martin & Britz, Wolfgang, 2022. "Promoting extensive cattle production in the European Union has major implications for global agricultural trade and climate change," Discussion Papers 324710, University of Bonn, Institute for Food and Resource Economics.
  • Handle: RePEc:ags:ubfred:324710
    DOI: 10.22004/ag.econ.324710
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/324710/files/Dispap_22_1_Haddad_et_al.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.324710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wolfgang Britz, 2021. "Comparing Penalty Functions in Balancing and Dis-aggregating Social Accounting Matrices," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 6(1), pages 34-81, June.
    2. PHILIPPIDIS George & Helming John & Tabeau Andrzej, 2017. "Model linkage between CAPRI and MAGNET: An exploratory assessment," JRC Research Reports JRC106595, Joint Research Centre.
    3. Caitlyn Carrico, 2017. "An Enhanced Analytical Framework for Evaluating the Effects of Trade Costs along Global Value Chains," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 2(2), pages 43-111, December.
    4. Ruth Delzeit & Malte Winkler & Mareike Söder, 2018. "Land Use Change under Biofuel Policies and a Tax on Meat and Dairy Products: Considering Complexity in Agricultural Production Chains Matters," Sustainability, MDPI, vol. 10(2), pages 1-25, February.
    5. Janine Pelikan & Wolfgang Britz & Thomas W. Hertel, 2015. "Green Light for Green Agricultural Policies? An Analysis at Regional and Global Scales," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(1), pages 1-19, February.
    6. Torbjörn Jansson & Sarah Säll, 2018. "Environmental Consumption Taxes On Animal Food Products To Mitigate Greenhouse Gas Emissions From The European Union," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(04), pages 1-16, November.
    7. Burfisher,Mary E., 2017. "Introduction to Computable General Equilibrium Models," Cambridge Books, Cambridge University Press, number 9781107584686, June.
    8. Britz, Wolfgang, 2021. "Estimating a global MAIDADS demand system considering demography, climate and norms," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 10(3), July.
    9. Golub, Alla A. & Hertel, Thomas W. & Sohngen, Brent, 2007. "Projecting Supply and Demand for Land in the Long Run," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 9910, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Rose, Steven K. & Lee, Huey-Lin, 2008. "Non-CO2 Greenhouse Gas Emissions Data for Climate Change Economic Analysis," Working papers 283461, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Wolfgang Britz & Roberto Roson, 2018. "Exploring Long Run Structural Change with a Dynamic General Equilibrium Model," Working Papers 2018: 12, Department of Economics, University of Venice "Ca' Foscari".
    12. Julia Jouan & Julia Heinrichs & Wolfgang Britz & Christoph Pahmeyer, 2019. "Integrated assessment of legume production challenged by European policy interaction: a case-study approach from French and German dairy farms," Working Papers hal-02501428, HAL.
    13. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    14. Calzadilla, Alvaro & Delzeit, Ruth & Klepper, Gernot, 2014. "DART-BIO: Modelling the interplay of food, feed and fuels in a global CGE model," Kiel Working Papers 1896, Kiel Institute for the World Economy (IfW Kiel).
    15. Wolfgang Britz, 2022. "Disaggregating Agro-Food Sectors in the GTAP Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 7(1), pages 44-75, June.
    16. Mun Ho & Wolfgang Britz & Ruth Delzeit & Florian Leblanc & Roberto Roson & Franziska Schuenemann & Matthias Weitzel, 2020. "Modelling Consumption and Constructing Long-Term Baselines in Final Demand," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 63-108, June.
    17. Gocht, Alexander & Britz, Wolfgang, 2011. "EU-wide farm type supply models in CAPRI--How to consistently disaggregate sector models into farm type models," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 146-167, January.
    18. Arnold Tukker & Arjan de Koning & Richard Wood & Troy Hawkins & Stephan Lutter & Jose Acosta & Jose M. Rueda Cantuche & Maaike Bouwmeester & Jan Oosterhaven & Thomas Drosdowski & Jeroen Kuenen, 2013. "Exiopol - Development And Illustrative Analyses Of A Detailed Global Mr Ee Sut/Iot," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 50-70, March.
    19. Pierre Dupraz & Hervé Guyomard, 2019. "Environment and Climate in the Common Agricultural Policy," EuroChoices, The Agricultural Economics Society, vol. 18(1), pages 18-25, April.
    20. Le, Quang Bao & Nkonya, Ephraim & Mirzabaev, Alisher, 2014. "Biomass Productivity-Based Mapping of Global Land Degradation Hotspots," Discussion Papers 177961, University of Bonn, Center for Development Research (ZEF).
    21. Rose, Steven & Lee, Huey-Lin, 2008. "Non-CO2 Greenhouse Gas Emissions Data for Climate Change Economic Analysis," GTAP Working Papers 2604, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    22. van der Linden, Aart & de Olde, Evelien M. & Mostert, Pim F. & de Boer, Imke J.M., 2020. "A review of European models to assess the sustainability performance of livestock production systems," Agricultural Systems, Elsevier, vol. 182(C).
    23. Britz, Wolfgang & van der Mensbrugghe, Dominique, 2016. "Reducing unwanted consequences of aggregation in large-scale economic models - A systematic empirical evaluation with the GTAP model," Economic Modelling, Elsevier, vol. 59(C), pages 463-472.
    24. Alexander Gocht & Pavel Ciaian & Maria Bielza & Jean-Michel Terres & Norbert Röder & Mihaly Himics & Guna Salputra, 2016. "Economic and environmental impacts of CAP greening: CAPRI simulation results," JRC Research Reports JRC102519, Joint Research Centre.
    25. Carrico, Caitlyn & Erwin Corong & Dominique van der Mensbrugghe, 2020. "The GTAP version 10A Multi-Region Input Output (MRIO) Data Base," GTAP Research Memoranda 6164, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    26. Roberto Roson & Wolfgang Britz, 2021. "Simulating long run structural change with a dynamic general equilibrium model," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 11(4), pages 368-405.
    27. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    28. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    29. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    30. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    31. Wolfgang Britz & Dominique van der Mensbrugghe, 2018. "CGEBox: A Flexible, Modular and Extendable Framework for CGE Analysis in GAMS," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(2), pages 106-177, December.
    32. Angel Aguiar & Maksym Chepeliev & Erwin L. Corong & Robert McDougall & Dominique van der Mensbrugghe, 2019. "The GTAP Data Base: Version 10," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 1-27, June.
    33. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    34. Burfisher,Mary E., 2017. "Introduction to Computable General Equilibrium Models," Cambridge Books, Cambridge University Press, number 9781107132207, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haddad, Salwa & Escobar, Neus & Bruckner, Martin & Britz, Wolfgang, 2019. "Global land use impacts from a subsidy on grassland-based ruminant livestock production in the European Union," Conference papers 333082, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Jafari, Yaghoob & Engemann, Helena & Heckelei, Thomas & Hainsch, Karlo, 2023. "National and Regional Economic Impacts of changes in Germany's electricity mix: A dynamic analysis through 2050," Utilities Policy, Elsevier, vol. 82(C).
    4. Dolter, Brett & Victor, Peter A., 2016. "Casting a long shadow: Demand-based accounting of Canada's greenhouse gas emissions responsibility," Ecological Economics, Elsevier, vol. 127(C), pages 156-164.
    5. Jingwen Huo & Peipei Chen & Klaus Hubacek & Heran Zheng & Jing Meng & Dabo Guan, 2022. "Full‐scale, near real‐time multi‐regional input–output table for the global emerging economies (EMERGING)," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1218-1232, August.
    6. Delin, Huang, 2012. "Policy Implications and Mitigation Potential in China Agricultural Greenhouse Gas Emission," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 124848, International Association of Agricultural Economists.
    7. Lorenza Campagnolo & Carlo Carraro & Fabio Eboli & Luca Farnia & Ramiro Parrado & Roberta Pierfederici, 2018. "The Ex-Ante Evaluation of Achieving Sustainable Development Goals," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(1), pages 73-116, February.
    8. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    9. Kamel Almutairi & Greg Thoma & Alvaro Durand-Morat, 2018. "Ex-Ante Analysis of Economic, Social and Environmental Impacts of Large-Scale Renewable and Nuclear Energy Targets for Global Electricity Generation by 2030," Sustainability, MDPI, vol. 10(8), pages 1-25, August.
    10. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.
    11. Li, Meng & Gao, Yuning & Meng, Bo & Yang, Zhusong, 2021. "Managing the mitigation: Analysis of the effectiveness of target-based policies on China's provincial carbon emission and transfer," Energy Policy, Elsevier, vol. 151(C).
    12. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    13. Mun Ho & Wolfgang Britz & Ruth Delzeit & Florian Leblanc & Roberto Roson & Franziska Schuenemann & Matthias Weitzel, 2020. "Modelling Consumption and Constructing Long-Term Baselines in Final Demand," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 63-108, June.
    14. Hermannsson, Kristinn & McIntyre, Stuart G., 2014. "Local consumption and territorial based accounting for CO2 emissions," Ecological Economics, Elsevier, vol. 104(C), pages 1-11.
    15. Thomas Wiedmann & Guangwu Chen & Anne Owen & Manfred Lenzen & Michael Doust & John Barrett & Kristian Steele, 2021. "Three‐scope carbon emission inventories of global cities," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 735-750, June.
    16. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    17. David Laborde & Simla Tokgoz & Lindsay Shutes & Hugo Valin, 2013. "Assessment framework and operational definitions for long-term scenarios," FOODSECURE Working papers 14, LEI Wageningen UR.
    18. Diamantis Koutsandreas & Evangelos Spiliotis & Haris Doukas & John Psarras, 2021. "What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece," Energies, MDPI, vol. 14(8), pages 1-19, April.
    19. Martin Henseler & Ruth Delzeit & Marcel Adenäuer & Sarah Baum & Peter Kreins, 2020. "Nitrogen Tax and Set-Aside as Greenhouse Gas Abatement Policies Under Global Change Scenarios: A Case Study for Germany," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 299-329, July.
    20. Britz, Wolfgang & van der Mensbrugghe, Dominique, 2017. "A flexible, modular and extendable framework for CGE analysis in GAMS," Conference papers 332918, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    More about this item

    Keywords

    Agricultural and Food Policy; Environmental Economics and Policy; Land Economics/Use;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ubfred:324710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/zefbnde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.