IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2235-d537513.html
   My bibliography  Save this article

What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece

Author

Listed:
  • Diamantis Koutsandreas

    (Decision Support Systems Lab (EPU-NTUA), School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens, Greece)

  • Evangelos Spiliotis

    (Forecasting and Strategy Unit, School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens, Greece)

  • Haris Doukas

    (Decision Support Systems Lab (EPU-NTUA), School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens, Greece)

  • John Psarras

    (Decision Support Systems Lab (EPU-NTUA), School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens, Greece)

Abstract

In alignment with the European Union’s legislation, Greece submitted its final 10-year National Energy and Climate Plan (NECP) in December 2019, setting more ambitious energy and climate targets than those originally proposed in the draft version of the document. Apart from higher penetration of renewable energy sources (RES), the final NECP projects also zero carbon use in power generation till 2030. Although decarbonization has long been regarded beneficial for economies that base their energy production on coal, as it is the case with Greece, the macroeconomic and societal ramifications of faster transitions to carbon-free economies remain highly unexplored. Under this context, in this paper, we soft-link energy models, namely Times-Greece and Primes, with a macroeconomic model, namely Global Trade Analysis Project (GTAP), to measure the effects of the final and draft NECPs on the Greek economy and evaluate the impact of higher decarbonization speeds. We find that the faster transition scenario displays both economic and societal merits, increasing Gross Domestic Product (GDP) and household income by about 1% and 7%, respectively.

Suggested Citation

  • Diamantis Koutsandreas & Evangelos Spiliotis & Haris Doukas & John Psarras, 2021. "What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece," Energies, MDPI, vol. 14(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2235-:d:537513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruth Delzeit & Robert Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel &, 2020. "Linking Global CGE Models with Sectoral Models to Generate Baseline Scenarios: Approaches, Challenges, and Opportunities," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 162-195, June.
    2. Burfisher,Mary E., 2017. "Introduction to Computable General Equilibrium Models," Cambridge Books, Cambridge University Press, number 9781107584686, June.
    3. Carolina Grottera & Emilio Lèbre La Rovere & William Wills & Amaro Olímpio Pereira Jr, 2020. "The role of lifestyle changes in low-emissions development strategies: an economy-wide assessment for Brazil," Climate Policy, Taylor & Francis Journals, vol. 20(2), pages 217-233, February.
    4. Maryse Labriet & Laurent Drouet & Marc Vielle & Richard Loulou & Amit Kanudia & Alain Haurie, 2015. "Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models," Working Papers 2015.23, Fondazione Eni Enrico Mattei.
    5. Krook-Riekkola, Anna & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2017. "Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model," Energy, Elsevier, vol. 141(C), pages 803-817.
    6. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.
    7. Haris Doukas & Alexandros Nikas & Mikel González-Eguino & Iñaki Arto & Annela Anger-Kraavi, 2018. "From Integrated to Integrative: Delivering on the Paris Agreement," Sustainability, MDPI, vol. 10(7), pages 1-10, July.
    8. Burfisher,Mary E., 2017. "Introduction to Computable General Equilibrium Models," Cambridge Books, Cambridge University Press, number 9781107132207, June.
    9. Miguel Gonzalez-Salazar & Thomas Langrock & Christoph Koch & Jana Spieß & Alexander Noack & Markus Witt & Michael Ritzau & Armin Michels, 2020. "Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin," Energies, MDPI, vol. 13(23), pages 1-27, December.
    10. Panagiotis Pegkas, 2018. "The Effect of Government Debt and Other Determinants on Economic Growth: The Greek Experience," Economies, MDPI, vol. 6(1), pages 1-19, February.
    11. Andrew G. Haldane & Arthur E. Turrell, 2019. "Drawing on different disciplines: macroeconomic agent-based models," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 39-66, March.
    12. Francesco Calise & Francesco L. Cappiello & Maria Vicidomini & Jian Song & Antonio M. Pantaleo & Suzan Abdelhady & Ahmed Shaban & Christos N. Markides, 2021. "Energy and Economic Assessment of Energy Efficiency Options for Energy Districts: Case Studies in Italy and Egypt," Energies, MDPI, vol. 14(4), pages 1-24, February.
    13. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    14. Shahriyar Nasirov & Raúl O’Ryan & Héctor Osorio, 2020. "Decarbonization Tradeoffs: A Dynamic General Equilibrium Modeling Analysis for the Chilean Power Sector," Sustainability, MDPI, vol. 12(19), pages 1-19, October.
    15. Rick Kotze & Alan C. Brent & Josephine Musango & Imke de Kock & Leonard A. Malczynski, 2021. "Investigating the Investments Required to Transition New Zealand’s Heavy-Duty Vehicles to Hydrogen," Energies, MDPI, vol. 14(6), pages 1-22, March.
    16. Ram, Manish & Aghahosseini, Arman & Breyer, Christian, 2020. "Job creation during the global energy transition towards 100% renewable power system by 2050," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    17. Truong P. Truong & Claudia Kemfert & Jean-Marc Burniaux, 2007. "GTAP-E: An Energy-Environmental Version of the GTAP Model with Emission Trading," Discussion Papers of DIW Berlin 668, DIW Berlin, German Institute for Economic Research.
    18. Kamel Almutairi & Greg Thoma & Alvaro Durand-Morat, 2018. "Ex-Ante Analysis of Economic, Social and Environmental Impacts of Large-Scale Renewable and Nuclear Energy Targets for Global Electricity Generation by 2030," Sustainability, MDPI, vol. 10(8), pages 1-25, August.
    19. Samuel Alexander & Joshua Floyd, 2020. "The Political Economy of Deep Decarbonization: Tradable Energy Quotas for Energy Descent Futures," Energies, MDPI, vol. 13(17), pages 1-18, August.
    20. Haris Doukas & Alexandros Nikas & Giorgos Stamtsis & Ioannis Tsipouridis, 2020. "The Green Versus Green Trap and a Way Forward," Energies, MDPI, vol. 13(20), pages 1-6, October.
    21. Doukas, Haris & Nikas, Alexandros, 2020. "Decision support models in climate policy," European Journal of Operational Research, Elsevier, vol. 280(1), pages 1-24.
    22. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    23. Matteo Fermeglia & Paolo Bevilacqua & Claudia Cafaro & Paolo Ceci & Antonio Fardelli, 2020. "Legal Pathways to Coal Phase-Out in Italy in 2025," Energies, MDPI, vol. 13(21), pages 1-22, October.
    24. Forouli, Aikaterini & Gkonis, Nikolaos & Nikas, Alexandros & Siskos, Eleftherios & Doukas, Haris & Tourkolias, Christos, 2019. "Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets," Energy, Elsevier, vol. 170(C), pages 818-831.
    25. Adams, Philip D., 2005. "Interpretation of results from CGE models such as GTAP," Journal of Policy Modeling, Elsevier, vol. 27(8), pages 941-959, November.
    26. Julien Lefevre, 2016. "A description of the IMACLIM-BR model: a modeling framework to assess climate and energy policy in Brazil [Une description du modèle IMACLIM-BR: un outil de modélisation pour évaluer les politiques," Working Papers hal-01685947, HAL.
    27. Lars Nilsson, 2018. "Reflections on the Economic Modelling of Free Trade Agreements," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(1), pages 156-186, June.
    28. Gürkan Kumbaroğlu & Cansu Canaz & Jonathan Deason & Ekundayo Shittu, 2020. "Profitable Decarbonization through E-Mobility," Energies, MDPI, vol. 13(16), pages 1-23, August.
    29. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    30. Angel Aguiar & Maksym Chepeliev & Erwin L. Corong & Robert McDougall & Dominique van der Mensbrugghe, 2019. "The GTAP Data Base: Version 10," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleni Zafeiriou & Konstantinos Spinthiropoulos & Constantinos Tsanaktsidis & Stavros Garefalakis & Konstantinos Panitsidis & Alexandros Garefalakis & Garyfallos Arabatzis, 2022. "Energy and Mineral Resources Exploitation in the Delignitization Era: The Case of Greek Peripheries," Energies, MDPI, vol. 15(13), pages 1-20, June.
    2. Gerassimos Bertsatos & Nicholas Tsounis, 2023. "Assessing the Impact of Trade Barriers on Energy Use in Turbulent Times: Current Conditions and Future Outlook for Greece," Energies, MDPI, vol. 16(15), pages 1-25, August.
    3. Gema Hernández-Moral & Sofía Mulero-Palencia & Víctor Iván Serna-González & Carla Rodríguez-Alonso & Roberto Sanz-Jimeno & Vangelis Marinakis & Nikos Dimitropoulos & Zoi Mylona & Daniele Antonucci & H, 2021. "Big Data Value Chain: Multiple Perspectives for the Built Environment," Energies, MDPI, vol. 14(15), pages 1-21, July.
    4. George Martinidis & Arkadiusz Dyjakon & Stanisław Minta & Rafał Ramut, 2022. "Intellectual Capital and Sustainable S3 in the Regions of Central Macedonia and Western Macedonia, Greece," Sustainability, MDPI, vol. 14(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    2. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    3. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    4. Doukas, H. & Arsenopoulos, A. & Lazoglou, M. & Nikas, A. & Flamos, A., 2022. "Wind repowering: Unveiling a hidden asset," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Haddad, Salwa & Escobar, Neus & Bruckner, Martin & Britz, Wolfgang, 2022. "Promoting extensive cattle production in the European Union has major implications for global agricultural trade and climate change," Discussion Papers 324710, University of Bonn, Institute for Food and Resource Economics.
    6. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    7. Pisciella, Paolo & van Beesten, E. Ruben & Tomasgard, Asgeir, 2023. "Efficient coordination of top-down and bottom-up models for energy system design: An algorithmic approach," Energy, Elsevier, vol. 284(C).
    8. Kamel Almutairi & Greg Thoma & Alvaro Durand-Morat, 2018. "Ex-Ante Analysis of Economic, Social and Environmental Impacts of Large-Scale Renewable and Nuclear Energy Targets for Global Electricity Generation by 2030," Sustainability, MDPI, vol. 10(8), pages 1-25, August.
    9. Olegs Krasnopjorovs & Daniels Jukna & Konstantins Kovalovs, 2022. "On the Use of General Equilibrium Model to Assess the Impact of Climate Policy in Latvia," Post-Print hal-03861139, HAL.
    10. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    11. Emanuele Ferrari & Thomas Chatzopoulos & Ignacio Perez Dominguez & Pierre Boulanger & Kirsten Boysen-Urban & Mihaly Himics & Robert M’barek, 2021. "Cumulative economic impact of trade agreements on EU agriculture: 2021 update," JRC Research Reports JRC123037, Joint Research Centre.
    12. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-37, January.
    13. Vangelis Marinakis & Themistoklis Koutsellis & Alexandros Nikas & Haris Doukas, 2021. "AI and Data Democratisation for Intelligent Energy Management," Energies, MDPI, vol. 14(14), pages 1-14, July.
    14. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    15. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    16. Marcus Roller, 2023. "Estimation of direct net effects of events," Tourism Economics, , vol. 29(6), pages 1577-1597, September.
    17. Weitzel, Matthias & Vandyck, Toon & Rey Los Santos, Luis & Tamba, Marie & Temursho, Umed & Wojtowicz, Krzysztof, 2023. "A comprehensive socio-economic assessment of EU climate policy pathways," Ecological Economics, Elsevier, vol. 204(PA).
    18. Anja Bauer & Leo Capari & Daniela Fuchs & Titus Udrea, 2023. "Diversification, integration, and opening: developments in modelling for policy," Science and Public Policy, Oxford University Press, vol. 50(6), pages 977-987.
    19. Saboori, Behnaz & Gholipour, Hassan F. & Rasoulinezhad, Ehsan & Ranjbar, Omid, 2022. "Renewable energy sources and unemployment rate: Evidence from the US states," Energy Policy, Elsevier, vol. 168(C).
    20. Lukman OYELAMI & Amara ZONGO, 2022. "Modeling the Impact of Non-Tariff Barriers in Services on Intra-African Trade: Global Trade Analysis Project Model," Bordeaux Economics Working Papers 2022-08, Bordeaux School of Economics (BSE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2235-:d:537513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.