IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Model Selection Criteria And Quadratic Discrimination In Arma And Setar Time Series Models

  • Pedro Galeano

    ()

  • Daniel Peña

    ()

We show that analyzing model selection in ARMA time series models as a quadratic discrimination problem provides a unifying approach for deriving model selection criteria. Also this approach suggest a different definition of expected likelihood that the one proposed by Akaike. This approach leads to including a correction term in the criteria which does not modify their large sample performance but can produce significant improvement in the performance of the criteria in small samples. Thus we propose a family of criteria which generalizes the commonly used model selection criteria. These ideas can be extended to self exciting autoregressive models (SETAR) and we generalize the proposed approach for these non linear time series models. A Monte-Carlo study shows that this family improves the finite sample performance of criteria such as AIC, corrected AIC and BIC, for ARMA models, and AIC, corrected AIC, BIC and some cross-validation criteria for SETAR models. In particular, for small and medium sample size the frequency of selecting the true model improves for the consistent criteria and the root mean square error of prediction improves for the efficient criteria. These results are obtained for both linear ARMA models and SETAR models in which we assume that the threshold and the parameters are unknown.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://docubib.uc3m.es/WORKINGPAPERS/WS/ws041406.pdf
Download Restriction: no

Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws041406.

as
in new window

Length:
Date of creation: Feb 2004
Date of revision:
Handle: RePEc:cte:wsrepe:ws041406
Contact details of provider: Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
Phone: 6249847
Fax: 6249849
Web page: http://portal.uc3m.es/portal/page/portal/dpto_estadistica

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. van der Leeuw, Jan, 1994. "The covariance matrix of ARMA errors in closed form," Journal of Econometrics, Elsevier, vol. 63(2), pages 397-405, August.
  2. Kapetanios, G., 1999. "Model Selection in Threshold Models," Cambridge Working Papers in Economics 9906, Faculty of Economics, University of Cambridge.
  3. Chow, Gregory C., 1981. "A comparison of the information and posterior probability criteria for model selection," Journal of Econometrics, Elsevier, vol. 16(1), pages 21-33, May.
  4. McQuarrie, Allan & Shumway, Robert & Tsai, Chih-Ling, 1997. "The model selection criterion AICu," Statistics & Probability Letters, Elsevier, vol. 34(3), pages 285-292, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws041406. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.