IDEAS home Printed from https://ideas.repec.org/a/ucp/jaerec/doi10.1086-688496.html
   My bibliography  Save this article

Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat

Author

Listed:
  • Ram Fishman
  • Upmanu Lall
  • Vijay Modi
  • Nikunj Parekh

Abstract

Efficient pricing of water and energy, advocated by economists as a means of achieving more efficient allocations, is often politically infeasible, especially in developing countries. In India, for example, subsidized, nonvolumetric pricing of the electricity used to pump groundwater is politically entrenched and often blamed for groundwater depletion. Are there politically feasible ways to introduce incentives for conservation? We worked with a state government to design and test an alternative, voluntary approach, that invites farmers to install electricity meters and receive compensation for every unit they “save.” Interest in participation was high, leading to an unprecedented voluntary shift to meter-based billing, but we found no impacts on water usage. These results provide some of the first empirical evidence on the effect of incentives on water use in India, and we discuss the extent to which they are informative about other policy tools, such as full pricing.

Suggested Citation

  • Ram Fishman & Upmanu Lall & Vijay Modi & Nikunj Parekh, 2016. "Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 819-855.
  • Handle: RePEc:ucp:jaerec:doi:10.1086/688496
    DOI: 10.1086/688496
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1086/688496
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: http://dx.doi.org/10.1086/688496
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: https://libkey.io/10.1086/688496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Planning Commission, 2012. "Annual Report (2011-12) on The Working of State Power Utilities and Electricity Departments," Working Papers id:4868, eSocialSciences.
    2. Tsur, Yacov & Dinar, Ariel, 1997. "The Relative Efficiency and Implementation Costs of Alternative Methods for Pricing Irrigation Water," The World Bank Economic Review, World Bank Group, vol. 11(2), pages 243-262, May.
    3. Jennifer M. Alix-Garcia & Elizabeth N. Shapiro & Katharine R. E. Sims, 2012. "Forest Conservation and Slippage: Evidence from Mexico’s National Payments for Ecosystem Services Program," Land Economics, University of Wisconsin Press, vol. 88(4), pages 613-638.
    4. Koichiro Ito, 2015. "Asymmetric Incentives in Subsidies: Evidence from a Large-Scale Electricity Rebate Program," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 209-237, August.
    5. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," Review of Economic Studies, Oxford University Press, vol. 76(3), pages 1071-1102.
    6. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    7. Banerji, A. & Meenakshi, J.V. & Khanna, Gauri, 2012. "Social contracts, markets and efficiency: Groundwater irrigation in North India," Journal of Development Economics, Elsevier, vol. 98(2), pages 228-237.
    8. Shah, Tushaar & Bhatt, Sonal & Shah, R.K. & Talati, Jayesh, 2008. "Groundwater governance through electricity supply management: Assessing an innovative intervention in Gujarat, western India," Agricultural Water Management, Elsevier, vol. 95(11), pages 1233-1242, November.
    9. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, Oxford University Press, vol. 119(1), pages 249-275.
    10. Shah, Tushaar, 2007. "The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts," IWMI Books, Reports H039669, International Water Management Institute.
    11. Kumar, M. Dinesh, 2005. "Impact of electricity prices and volumetric water allocation on energy and groundwater demand management:: analysis from Western India," Energy Policy, Elsevier, vol. 33(1), pages 39-51, January.
    12. Sheetal Sekhri & Sriniketh Nagavarapu, 2013. "Less Is More? Implications of Regulatory Capture for Natural Resource Depletion," Virginia Economics Online Papers 408, University of Virginia, Department of Economics.
    13. Boomhower, Judson & Davis, Lucas W., 2014. "A credible approach for measuring inframarginal participation in energy efficiency programs," Journal of Public Economics, Elsevier, vol. 113(C), pages 67-79.
    14. Mukherji, A. & Das, B. & Majumdar, N. & Nayak, N.C. & Sethi, R.R. & Sharma, B.R., 2009. "Metering of agricultural power supply in West Bengal, India: Who gains and who loses?," Energy Policy, Elsevier, vol. 37(12), pages 5530-5539, December.
    15. Meenakshi, J. V. & Banerji, A. & Mukherji, Aditi & Gupta, A., 2012. "Does marginal cost pricing of electricity affect groundwater pumping behavior of farmers?. Project report submitted to International Initiative for Impact Evaluation (3ie) by IWMI," IWMI Research Reports H044958, International Water Management Institute.
    16. Giordano, Mark & Villholth, Karen, 2007. "The agricultural groundwater revolution: opportunities and threats to development," IWMI Books, Reports H040039, International Water Management Institute.
    17. Mukherji, Aditi, 2007. "The energy-irrigation nexus and its impact on groundwater markets in eastern Indo-Gangetic basin: Evidence from West Bengal, India," Energy Policy, Elsevier, vol. 35(12), pages 6413-6430, December.
    18. Planning Commission, 2012. "Annual Report 2011-12 On the Working of State Power Utilities and Electricity Departments," Working Papers id:4817, eSocialSciences.
    19. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    20. Shah, Tushaar, 2007. "The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts," Book Chapters,, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khanna, Tarun M., 2022. "Using agricultural demand for reducing costs of renewable energy integration in India," Energy, Elsevier, vol. 254(PC).
    2. Disha Gupta, 2023. "Free power, irrigation, and groundwater depletion: Impact of farm electricity policy of Punjab, India," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 515-541, July.
    3. Schoengold, Karina & Brozovic, Nicholas, 2018. "The future of groundwater management in the high plains: evolving institutions, aquifers and regulations," Western Economics Forum, Western Agricultural Economics Association, vol. 16(1).
    4. Naresh Devineni & Shama Perveen & Upmanu Lall, 2022. "Solving groundwater depletion in India while achieving food security," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
    6. Mitra, Archisman & Balasubramanya, Soumya & Bouwer, Roy, 2021. "Can electricity rebates modify groundwater pumping behaviours? Evidence from a pilot study in Punjab, India," 2021 Annual Meeting, August 1-3, Austin, Texas 313871, Agricultural and Applied Economics Association.
    7. Buisson, Marie-Charlotte & Balasubramanya, Soumya & Stifel, David C., 2020. "Effects of electric pumps on farm-level agricultural production and groundwater use in West Bengal," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304212, Agricultural and Applied Economics Association.
    8. Sayre, Susan Stratton & Taraz, Vis, 2019. "Groundwater depletion in India: Social losses from costly well deepening," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 85-100.
    9. Hrozencik, R. Aaron, 2018. "Energy, Food, and Water; Electricity Cooperative Pricing and Groundwater Irrigation Decisions," 2018 Annual Meeting, August 5-7, Washington, D.C. 274322, Agricultural and Applied Economics Association.
    10. R. Aaron Hrozencik & Dale T. Manning & Jordan F. Suter & Christopher Goemans, 2022. "Impacts of Block‐Rate Energy Pricing on Groundwater Demand in Irrigated Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 404-427, January.
    11. Soumya Balasubramanya & Nicholas Brozović & Ram Fishman & Sharachchandra Lele & Jinxia Wang, 2022. "Managing irrigation under increasing water scarcity," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 976-984, November.
    12. Vasilaky, Kathryn & Harou, Aurélie & Alfredo, Katherine & Kapur, Ishita, 2023. "What works for water conservation? Evidence from a field experiment in India," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    13. Aditi Mukherji, 2022. "Sustainable Groundwater Management in India Needs a Water‐Energy‐Food Nexus Approach," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(1), pages 394-410, March.
    14. Sidhu, Balsher Singh & Kandlikar, Milind & Ramankutty, Navin, 2020. "Power tariffs for groundwater irrigation in India: A comparative analysis of the environmental, equity, and economic tradeoffs," World Development, Elsevier, vol. 128(C).
    15. Bahinipati, Chandra Sekhar & Viswanathan, P.K., 2019. "Incentivizing resource efficient technologies in India: Evidence from diffusion of micro-irrigation in the dark zone regions of Gujarat," Land Use Policy, Elsevier, vol. 86(C), pages 253-260.
    16. Nicholas Ryan & Anant Sudarshan, 2020. "Rationing the Commons," Working Papers 2020-93, Becker Friedman Institute for Research In Economics.
    17. Nicholas Ryan & Anant Sudarshan, 2020. "Rationing the Commons," Cowles Foundation Discussion Papers 2239, Cowles Foundation for Research in Economics, Yale University.
    18. Nicholas Ryan & Anant Sudarshan, 2020. "Rationing the Commons," NBER Working Papers 27473, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siwa Msangi & Sarah Ann Cline, 2016. "Improving Groundwater Management for Indian Agriculture: Assessing Tradeoffs Across Policy Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    2. Foster, Timothy & Adhikari, Roshan & Adhikari, Subash & Justice, Scott & Tiwari, Baburam & Urfels, Anton & Krupnik, Timothy J., 2021. "Improving pumpset selection to support intensification of groundwater irrigation in the Eastern Indo-Gangetic Plains," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Disha Gupta, 2023. "Free power, irrigation, and groundwater depletion: Impact of farm electricity policy of Punjab, India," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 515-541, July.
    4. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    5. Glendenning, C.J. & Vervoort, R.W., 2010. "Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India. Part 1: Field-scale impacts," Agricultural Water Management, Elsevier, vol. 98(2), pages 331-342, December.
    6. Chandra Kiran B. Krishnamurthy, 2017. "Optimal Management of Groundwater Under Uncertainty: A Unified Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 351-377, June.
    7. Jayanath Ananda & Mohamed Aheeyar, 2020. "An evaluation of groundwater institutions in India: a property rights perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5731-5749, August.
    8. Sidhu, Balsher Singh & Kandlikar, Milind & Ramankutty, Navin, 2020. "Power tariffs for groundwater irrigation in India: A comparative analysis of the environmental, equity, and economic tradeoffs," World Development, Elsevier, vol. 128(C).
    9. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    10. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.
    11. World Bank, 2020. "Managing Groundwater for Drought Resilience in South Asia," World Bank Publications - Reports 33332, The World Bank Group.
    12. Jac Van der Gun & Annukka Lipponen, 2010. "Reconciling Groundwater Storage Depletion Due to Pumping with Sustainability," Sustainability, MDPI, vol. 2(11), pages 1-18, November.
    13. Bjornlund, Vibeke & Bjornlund, Henning, 2019. "Understanding agricultural water management in a historical context using a socioeconomic and biophysical framework," Agricultural Water Management, Elsevier, vol. 213(C), pages 454-467.
    14. Eefje Aarnoudse & Wei Qu & Bettina Bluemling & Thomas Herzfeld, 2017. "Groundwater quota versus tiered groundwater pricing: two cases of groundwater management in north-west China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(6), pages 917-934, November.
    15. Martínez-Santos, P. & Martínez-Alfaro, P.E., 2010. "Estimating groundwater withdrawals in areas of intensive agricultural pumping in central Spain," Agricultural Water Management, Elsevier, vol. 98(1), pages 172-181, December.
    16. Paul Pavelic, 2020. "Mitigating Floods for Managing Droughts through Aquifer Storage," World Bank Publications - Reports 33244, The World Bank Group.
    17. Reena Badiani-Magnusson & Katrina Jessoe, 2018. "Electricity Prices, Groundwater, and Agriculture: The Environmental and Agricultural Impacts of Electricity Subsidies in India," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 157-183, National Bureau of Economic Research, Inc.
    18. Amarasinghe, Upali A. & Shah, Tushaar & McCornick, Peter G., 2009. "Meeting India’s water future: some policy options," Book Chapters,, International Water Management Institute.
    19. Pandey, Rita, 2014. "Groundwater Irrigation in Punjab: Some Issues and Way Forward," Working Papers 14/140, National Institute of Public Finance and Policy.
    20. Uma Lele, 2022. "Growing water scarcities: Responses of India and China," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(1), pages 411-433, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucp:jaerec:doi:10.1086/688496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journals Division (email available below). General contact details of provider: https://www.journals.uchicago.edu/JAERE .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.