IDEAS home Printed from https://ideas.repec.org/a/wsi/wepxxx/v02y2016i03ns2382624x16500272.html
   My bibliography  Save this article

Improving Groundwater Management for Indian Agriculture: Assessing Tradeoffs Across Policy Instruments

Author

Listed:
  • Siwa Msangi

    (International Food Policy Research Institute (IFPRI), Washington DC, USA)

  • Sarah Ann Cline

    (#x2020;Office of Policy Analysis of the United Sates, Department of the Interior, USA)

Abstract

Despite efforts to reform management of water resources, groundwater levels have continued to decline steadily in key aquifers across India, leading to serious environmental concerns and impacts. While policy makers have looked to efforts aimed at improving the efficiency of field-level irrigation and strengthening ownership and property rights in local resource management, hydrologists have asserted that more direct control of consumptive use patterns of water is needed. In this paper, we illustrate the divergence between current groundwater usage patterns and an optimal path, in which the groundwater levels are stabilized with better demand-side management. The paper assesses the tradeoffs embedded in alternative policy instruments that are aimed at modifying the groundwater pumping behavior of agricultural water users. The challenges of regulating smallholder agricultural water users are shown to be relevant in determining which instrument might have the best chance of slowing the depletion of groundwater resources in the hard-rock aquifers of India, and promoting the long-run sustainability of this critical natural resource.

Suggested Citation

  • Siwa Msangi & Sarah Ann Cline, 2016. "Improving Groundwater Management for Indian Agriculture: Assessing Tradeoffs Across Policy Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
  • Handle: RePEc:wsi:wepxxx:v:02:y:2016:i:03:n:s2382624x16500272
    DOI: 10.1142/S2382624X16500272
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2382624X16500272
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2382624X16500272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    2. Thomas Heckelei & Hendrik Wolff, 2003. "Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 30(1), pages 27-50, March.
    3. International Water Management Institute, IWMI-TATA Water Policy Program, 2003. "The energy-irrigation nexus," IWMI Water Policy Briefings 113065, International Water Management Institute.
    4. Richard E. Just & David Zilberman & Eithan Hochman, 1983. "Estimation of Multicrop Production Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(4), pages 770-780.
    5. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    6. Argyris Kanellopoulos & Paul Berentsen & Thomas Heckelei & Martin Van Ittersum & Alfons Oude Lansink, 2010. "Assessing the Forecasting Performance of a Generic Bio‐Economic Farm Model Calibrated With Two Different PMP Variants," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 274-294, June.
    7. Ottmar Röhm & Stephan Dabbert, 2003. "Integrating Agri-Environmental Programs into Regional Production Models: An Extension of Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 254-265.
    8. Heckelei, Thomas & Britz, Wolfgang, 2005. "Models Based on Positive Mathematical Programming: State of the Art and Further Extensions," 89th Seminar, February 2-5, 2005, Parma, Italy 234607, European Association of Agricultural Economists.
    9. Esteban, Encarna & Albiac, José, 2011. "Groundwater and ecosystems damages: Questioning the Gisser-Sánchez effect," Ecological Economics, Elsevier, vol. 70(11), pages 2062-2069, September.
    10. Bruno Henry Frahan & Jeroen Buysse & Philippe Polomé & Bruno Fernagut & Olivier Harmignie & Ludwig Lauwers & Guido Huylenbroeck & Jef Meensel, 2007. "Positive Mathematical Programming for Agricultural and Environmental Policy Analysis: Review and Practice," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 129-154, Springer.
    11. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    12. Banerji, A. & Meenakshi, J.V. & Khanna, Gauri, 2012. "Social contracts, markets and efficiency: Groundwater irrigation in North India," Journal of Development Economics, Elsevier, vol. 98(2), pages 228-237.
    13. Alexandre Gohin & Frédéric Chantreuil, 1999. "La programmation mathématique positive dans les modèles d'exploitation agricole : Principes et importance du calibrage," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 52, pages 59-78.
    14. World Bank, 2010. "Deep Wells and Prudence : Towards Pragmatic Action for Addressing Groundwater Overexploitation in India," World Bank Publications - Reports 2835, The World Bank Group.
    15. Pierre Mérel & Richard Howitt, 2014. "Theory and Application of Positive Mathematical Programming in Agriculture and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 451-470, October.
    16. Heckelei, Thomas & Britz, Wolfgang, 2000. "Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 57.
    17. Giordano, Mark & Villholth, Karen, 2007. "The agricultural groundwater revolution: opportunities and threats to development," IWMI Books, Reports H040039, International Water Management Institute.
    18. Birner, Regina & Gupta, Surupa & Sharma, Neeru, 2011. "The political economy of agricultural policy reform in India: Fertilizers and electricity for irrigation," Research reports reginabirner, International Food Policy Research Institute (IFPRI).
    19. Shah, T., 2003. "Sustaining Asia's groundwater boom: an overview of issues and evidence," IWMI Books, Reports H043763, International Water Management Institute.
    20. Shah, Tushaar & Molden, David J. & Sakthivadivel, Ramasamy & Seckler, David, 2000. "The global groundwater situation: overview of opportunities and challenges," IWMI Books, International Water Management Institute, number 113506.
    21. Agnes Tomini, 2014. "Is the Gisser and Sanchez model too simple to discuss the economic relevance of groundwater management?," Post-Print hal-01463916, HAL.
    22. Shah, Tushaar & Bhatt, Sonal & Shah, R.K. & Talati, Jayesh, 2008. "Groundwater governance through electricity supply management: Assessing an innovative intervention in Gujarat, western India," Agricultural Water Management, Elsevier, vol. 95(11), pages 1233-1242, November.
    23. Graeme Doole & Dan Marsh, 2014. "Use of positive mathematical programming invalidates the application of the NZFARM model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), pages 291-294, April.
    24. Pierre Mérel & Santiago Bucaram, 2010. "Exact calibration of programming models of agricultural supply against exogenous supply elasticities," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(3), pages 395-418, September.
    25. International Water Management Institute, IWMI-TATA Water Policy Program, 2003. "The energy-irrigation nexus," IWMI Water Policy Briefings H034112, International Water Management Institute.
    26. Barkaoui, Ahmed & Butault, Jean-Pierre, 2000. "Cereals and Oilseeds Supply within the EU, under AGENDA 2000: A Positive Mathematical Programming Application," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 1(2), pages 1-12, August.
    27. Pierre Mérel & Fujin Yi & Juhwan Lee & Johan Six, 2014. "A Regional Bio-economic Model of Nitrogen Use in Cropping," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 67-91.
    28. R. Rejani & Madan Jha & S. Panda & R. Mull, 2008. "Simulation Modeling for Efficient Groundwater Management in Balasore Coastal Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 23-50, January.
    29. Shah, Tushaar, 2007. "The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts," IWMI Books, Reports H039669, International Water Management Institute.
    30. Kumar, M. Dinesh, 2005. "Impact of electricity prices and volumetric water allocation on energy and groundwater demand management:: analysis from Western India," Energy Policy, Elsevier, vol. 33(1), pages 39-51, January.
    31. Shah, Tushaar, 2007. "The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts," Book Chapters,, International Water Management Institute.
    32. Reddy, V. Ratna, 2005. "Costs of resource depletion externalities: a study of groundwater overexploitation in Andhra Pradesh, India," Environment and Development Economics, Cambridge University Press, vol. 10(4), pages 533-556, August.
    33. Pierre Mérel & Leo K. Simon & Fujin Yi, 2011. "A Fully Calibrated Generalized Constant-Elasticity-of-Substitution Programming Model of Agricultural Supply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 936-948.
    34. Priya Sangameswaran, 2008. "Community Formation, 'Ideal' Villages and Watershed Development in Western India," Journal of Development Studies, Taylor & Francis Journals, vol. 44(3), pages 384-408.
    35. Shah, T. & Molden, D. & Sakthivadivel, R. & Seckler, D., 2000. "The global groundwater situation: overview of opportunities and challenges," IWMI Books, Reports H025885, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Zhu & Xiangyang Zhou & Jin Guo, 2023. "Sustainability of Agriculture: A Study of Digital Groundwater Supervision," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    2. Faye, Amy & Msangi, Siwa, 2018. "Rainfall variability and groundwater availability for irrigation in Sub-Saharan Africa: evidence from the Niayes region of Senegal," MPRA Paper 92625, University Library of Munich, Germany.
    3. Sayre, Susan Stratton & Taraz, Vis, 2019. "Groundwater depletion in India: Social losses from costly well deepening," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 85-100.
    4. Carlos Mario Gómez Gómez & C. D. Pérez-Blanco & David Adamson & Adam Loch, 2018. "Managing Water Scarcity at a River Basin Scale with Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umed Temurshoev & Marian Mraz & Luis Delgado Sancho & Peter Eder, 2015. "EU Petroleum Refining Fitness Check: OURSE Modelling and Results," JRC Research Reports JRC96207, Joint Research Centre.
    2. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
    3. Umed Temurshoev & Fréderic Lantz, 2016. "Long-term petroleum product supply analysis through a robust modelling approach," Working Papers 2016-003, Universidad Loyola Andalucía, Department of Economics.
    4. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Paloma, Sergio, 2015. "The Impact of Crop Diversification Measure: EU-wide Evidence Based on IFM-CAP Model," 2015 Conference, August 9-14, 2015, Milan, Italy 211542, International Association of Agricultural Economists.
    5. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "EU-wide individual Farm Model for CAP Analysis (IFM-CAP): Application to Crop Diversification Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212155, International Association of Agricultural Economists.
    6. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    7. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    8. Kamel Louhichi & Pavel Ciaian & Maria Espinosa & Angel Perni & Sergio Gomez y Paloma, 2018. "Economic impacts of CAP greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP)," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(2), pages 205-238.
    9. Heckelei, Thomas & Britz, Wolfgang, 2005. "Models Based on Positive Mathematical Programming: State of the Art and Further Extensions," 89th Seminar, February 2-5, 2005, Parma, Italy 234607, European Association of Agricultural Economists.
    10. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    11. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "Farm-level economic impacts of EU-CAP greening measures," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205309, Agricultural and Applied Economics Association.
    12. Ram Fishman & Upmanu Lall & Vijay Modi & Nikunj Parekh, 2016. "Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 819-855.
    13. Judez, Lucinio & de Andres, Rosario & Ibanez, M. & De Miguel, J.M. & Miguel, J.L. & Urzainqui, Elvira, 2008. "Impact Of The Cap Reform On The Spanish Agricultural Sector," 109th Seminar, November 20-21, 2008, Viterbo, Italy 44830, European Association of Agricultural Economists.
    14. Arfini, Filippo & Donati, Michele & Marongiu, Sonia & Cesaro, Luca, 2012. "Farm production costs estimation trough PMP Models: an application in three Italian Regions," 2012 First Congress, June 4-5, 2012, Trento, Italy 124117, Italian Association of Agricultural and Applied Economics (AIEAA).
    15. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    16. He, Lixia & Horbulyk, Theodore M. & Ali, Md. Kamar & Le Roy, Danny G. & Klein, K.K., 2012. "Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 104(C), pages 21-31.
    17. World Bank, 2020. "Managing Groundwater for Drought Resilience in South Asia," World Bank Publications - Reports 33332, The World Bank Group.
    18. Fragoso, R. & Marques, C. & Lucas, M.R. & Martins, M.B. & Jorge, R., 2011. "The economic effects of common agricultural policy on Mediterranean montado/dehesa ecosystem," Journal of Policy Modeling, Elsevier, vol. 33(2), pages 311-327, March.
    19. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Montilla-López, Nazaret M., 2021. "Priority water rights. Are they useful for improving water-use efficiency at the irrigation district level?," Agricultural Water Management, Elsevier, vol. 257(C).
    20. Cortignani, Raffaele & Severini, Simone, 2009. "Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming," Agricultural Water Management, Elsevier, vol. 96(12), pages 1785-1791, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wepxxx:v:02:y:2016:i:03:n:s2382624x16500272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/wep/wep.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.