IDEAS home Printed from https://ideas.repec.org/p/qld/uq2004/517.html
   My bibliography  Save this paper

Inter-district rice water productivity differences in Bangladesh: An empirical exploration and implications

Author

Listed:

Abstract

While the bulk of research on crop water productivity (WP) focuses on static cross-section analysis, this research provides a spatio-temporal perspective. It estimates rice crop WP for 21 Bangladesh districts for 37 years; explores WP variations among districts; and investigates causality involving WP, intensification and technological variables; and groundwater irrigation and depth. It breaks new grounds by probing these significant but unexplored issues. Technological diffusion was the key factor explaining inter-district WP differences. The impact of agricultural intensification on rabi (dry season) and kharif (wet season) crop WPs was positive and negative respectively. Dummy variables typifying policy transition negatively impacted on WPs for both kharif and overall crops. While rabi and kharif rice WPs grew with time, overall crop WP recorded the strongest growth. Rabi and overall WPs were lower in salinity- and drought-prone districts covering 33% of Bangladesh's net cropped area (NCA). In 90% of Bangladesh's NCA districts, technological diffusion caused WP. Causality existed between groundwater irrigation and depth in 60% NCA. Despite significant potential to increase WP, increasing dependence on ground- water appears unsustainable. Widespread diffusion of HYVs in the kharif season, and development of salinity and drought-tolerant rice varieties could go a long way in sustaining rice WP.

Suggested Citation

  • Mohammad Alauddin & Bharat R. Sharma, 2013. "Inter-district rice water productivity differences in Bangladesh: An empirical exploration and implications," Discussion Papers Series 517, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uq2004:517
    as

    Download full text from publisher

    File URL: http://www.uq.edu.au/economics/abstract/517.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    2. Amarasinghe, Upali A. & Shah, Tushaar & Singh, Om Prakash, 2007. "Changing consumption patterns: implications on food and water demand in India," IWMI Research Reports 44517, International Water Management Institute.
    3. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    4. Barker, Randolph & Levine, G., 2012. "Water productivity in context: the experiences of Taiwan and the Philippines over the past half-century," IWMI Research Reports 158343, International Water Management Institute.
    5. Barker, R. & Levine, G., 2012. "Water productivity in context: the experiences of Taiwan and the Philippines over the past half-century," IWMI Research Reports H045273, International Water Management Institute.
    6. A. Colin Cameron & Pravin K. Trivedi, 2010. "Microeconometrics Using Stata, Revised Edition," Stata Press books, StataCorp LP, number musr, March.
    7. Zahid, A. & Ahmed, S. R. U., 2006. "Groundwater resources development in Bangladesh: contribution to irrigation for food security and constraints to sustainability," IWMI Books, Reports H039306, International Water Management Institute.
    8. Mohammad A. Hossain & Mohammad Alauddin, 2005. "Trade liberalization in Bangladesh: the process and its impact on macro variables particularly export expansion," Journal of Developing Areas, Tennessee State University, College of Business, vol. 39(1), pages 127-150, September.
    9. Alauddin, Mohammad, 2004. "Environmentalizing economic development: a South Asian perspective," Ecological Economics, Elsevier, vol. 51(3-4), pages 251-270, December.
    10. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    11. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    12. Shah, Tushaar, 2007. "The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts," IWMI Books, Reports H039669, International Water Management Institute.
    13. Singh, R. & van Dam, J.C. & Feddes, R.A., 2006. "Water productivity analysis of irrigated crops in Sirsa district, India," Agricultural Water Management, Elsevier, vol. 82(3), pages 253-278, April.
    14. Mahajan, G. & Bharaj, T.S. & Timsina, J., 2009. "Yield and water productivity of rice as affected by time of transplanting in Punjab, India," Agricultural Water Management, Elsevier, vol. 96(3), pages 525-532, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scheierling, Susanne M. & Treguer, David O. & Booker, James F., 2015. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205677, Agricultural and Applied Economics Association.
    2. Zeenatul Islam & Mohammad Alauddin & Md. Abdur Rashid Sarker, 2017. "Farmers’ perception on climate change-driven rice production loss in drought-prone and groundwater-depleted areas of Bangladesh: An ordered probit analysis," Discussion Papers Series 579, School of Economics, University of Queensland, Australia.
    3. Mobin-ud Ahmad & Mac Kirby & Mohammad Islam & Md. Hossain & Md. Islam, 2014. "Groundwater Use for Irrigation and its Productivity: Status and Opportunities for Crop Intensification for Food Security in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1415-1429, March.
    4. Isaure Delaporte & Mathilde Maurel, 2018. "Adaptation to climate change in Bangladesh," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 49-62, January.
    5. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    6. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    7. Alauddin, Mohammad & Sarker, Md Abdur Rashid, 2014. "Climate change and farm-level adaptation decisions and strategies in drought-prone and groundwater-depleted areas of Bangladesh: an empirical investigation," Ecological Economics, Elsevier, vol. 106(C), pages 204-213.
    8. Clement Tisdell & Mohammad Alauddin & Md. Abdur Rashid Sarker & Md Anwarul Kabir, 2019. "Agricultural Diversity and Sustainability: General Features and Bangladeshi Illustrations," Sustainability, MDPI, Open Access Journal, vol. 11(21), pages 1-22, October.
    9. Hasan, M. Mehedi & Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Jakaria, Mohammad & Alamgir, Mahiuddin, 2019. "Climate sensitivity of wheat yield in Bangladesh: Implications for the United Nations sustainable development goals 2 and 6," Land Use Policy, Elsevier, vol. 87(C).
    10. Susanne Scheierling & David O. Treguer & James F. Booker, 2016. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    11. Md. Jahangir Kabir & Mohammad Alauddin & Steven Crimp, 2016. "Farm-level Adaptation to Climate Change in Western Bangladesh: An Analysis of Adaptation Dynamics, Profitability and Risks," Discussion Papers Series 576, School of Economics, University of Queensland, Australia.
    12. M. A. Samad Azad & Tihomir Ancev, 2016. "Economics of Salinity Effects from Irrigated Cotton: An Efficiency Analysis," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-24, March.
    13. Khanal, Uttam & Wilson, Clevo & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farmers' Adaptation to Climate Change, Its Determinants and Impacts on Rice Yield in Nepal," Ecological Economics, Elsevier, vol. 144(C), pages 139-147.
    14. Scheierling, S. M., 2014. "How to assess agricultural water productivity?: looking for water in the agricultural productivity and efficiency literature," IWMI Working Papers H046876, International Water Management Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    2. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    3. Chattopadhyay, Pallavi Banerjee & Rangarajan, R., 2014. "Application of ANN in sketching spatial nonlinearity of unconfined aquifer in agricultural basin," Agricultural Water Management, Elsevier, vol. 133(C), pages 81-91.
    4. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    5. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Robert E. Martin & R. Carter Hill & Melissa S. Waters, 2017. "Baumol and Bowen Cost Effects in Research Universities," Departmental Working Papers 2017-03, Department of Economics, Louisiana State University.
    7. Ranjan Roy & Ngai Weng Chan, 2012. "An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis," Environment Systems and Decisions, Springer, vol. 32(1), pages 99-110, March.
    8. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    9. Rahman, Mohammad Mafizur & Kashem, Mohammad Abul, 2017. "Carbon emissions, energy consumption and industrial growth in Bangladesh: Empirical evidence from ARDL cointegration and Granger causality analysis," Energy Policy, Elsevier, vol. 110(C), pages 600-608.
    10. Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
    11. Wesseling, J.G. & Feddes, R.A., 2006. "Assessing crop water productivity from field to regional scale," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 30-39, November.
    12. Bjornlund, Vibeke & Bjornlund, Henning, 2019. "Understanding agricultural water management in a historical context using a socioeconomic and biophysical framework," Agricultural Water Management, Elsevier, vol. 213(C), pages 454-467.
    13. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
    14. Silva, João Vasco & Reidsma, Pytrik & Lourdes Velasco, Ma. & Laborte, Alice G. & van Ittersum, Martin K., 2018. "Intensification of rice-based farming systems in Central Luzon, Philippines: Constraints at field, farm and regional levels," Agricultural Systems, Elsevier, vol. 165(C), pages 55-70.
    15. Getnet, Kindie & Pfeifer, Catherine & MacAlister, Charlotte, 2014. "Economic incentives and natural resource management among small-scale farmers: Addressing the missing link," Ecological Economics, Elsevier, vol. 108(C), pages 1-7.
    16. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "A global benchmark map of water productivity for rainfed and irrigated wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1617-1627, October.
    17. Kumar, M. Dinesh, 2009. "Opportunities and constraints to improving water productivity in India," Book Chapters,, International Water Management Institute.
    18. Kumar, M. Dinesh, 2009. "Opportunities and constraints to improving water productivity in India," IWMI Books, Reports H042640, International Water Management Institute.
    19. Polimeni, John M. & Iorgulescu, Raluca I. & Chandrasekara, Ray, 2014. "Trans-border public health vulnerability and hydroelectric projects: The case of Yali Falls Dam," Ecological Economics, Elsevier, vol. 98(C), pages 81-89.
    20. Jalota, S.K. & Jain, A.K. & Vashisht, B.B., 2018. "Minimize water deficit in wheat crop to ameliorate groundwater decline in rice-wheat cropping system," Agricultural Water Management, Elsevier, vol. 208(C), pages 261-267.

    More about this item

    JEL classification:

    • O1 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uq2004:517. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/decuqau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SOE IT (email available below). General contact details of provider: https://edirc.repec.org/data/decuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.