IDEAS home Printed from https://ideas.repec.org/p/qld/uq2004/599.html
   My bibliography  Save this paper

Climate sensitivity of wheat yield in Bangladesh: Implications for Sustainable Development Goals 2 (SDG2) and 6 (SDG6)

Author

Listed:
  • M. Mehedi Hasan

    (Department of Economics, University of Rajshahi)

  • Mohammad Alauddin

    (School of Economics, The University of Queensland)

  • Md. Abdur Rashid Sarker

    (Department of Economics, University of Rajshahi)

  • Mohammad Jakaria

    (cDepartment of Economics, Hajee Mohammad Danesh Science & Technology University)

  • Mahiuddin Alamgir

    (Bangladesh Centre for Advanced Studies (BCAS),)

Abstract

Significant manifestations of adverse effects of climate change exist for crop agriculture throughout the developing word including Bangladesh. Despite wheat being the second most important staple crop, any rigorous analysis of its sensitivity to climate change remains a neglected area. This paper fills this gap by investigating wheat yield sensitivity to climate change over time and across climatic zones using 45-year panel data; and exploring policy implications for achieving SDG2 (food security) and SDG6 (sustainable water management) through expanded wheat cultivation. Average seasonal temperature and number of seasonal dry days trended upwards while rainfall (planting, flowering, harvesting) while bright sunshine trended downwards. Rise in average temperature, number of dry days, and relative humidity had adverse effects on wheat yield. Planting and flowering stage rainfall and sunnier weather conditions improved yield. Significant variations across regions and a positive time trend were evident implying technological progress. Strengthening institutional support systems, market accessibility, and science-driven climate change adaptation including generation and wider dissemination of drought tolerant wheat varieties, and enhancing farmers’ capacity to switch from rice to wheat constitute key areas of policy intervention. This will help ensure food security alongside sustainable water management.

Suggested Citation

  • M. Mehedi Hasan & Mohammad Alauddin & Md. Abdur Rashid Sarker & Mohammad Jakaria & Mahiuddin Alamgir, 2018. "Climate sensitivity of wheat yield in Bangladesh: Implications for Sustainable Development Goals 2 (SDG2) and 6 (SDG6)," Discussion Papers Series 599, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uq2004:599
    as

    Download full text from publisher

    File URL: https://economics.uq.edu.au/files/46355/599.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alauddin, Mohammad & Sharma, Bharat R., 2013. "Inter-district rice water productivity differences in Bangladesh: An empirical exploration and implications," Ecological Economics, Elsevier, vol. 93(C), pages 210-218.
    2. Kim, Man-Keun & Pang, Arwin, 2009. "Climate Change Impact on Rice Yield and Production Risk," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 32(2), pages 1-13, June.
    3. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    4. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    5. Xuan Yang & Zhan Tian & Laixiang Sun & Baode Chen & Francesco N. Tubiello & Yinlong Xu, 2017. "The impacts of increased heat stress events on wheat yield under climate change in China," Climatic Change, Springer, vol. 140(3), pages 605-620, February.
    6. M. MEHEDI HASAN & Md. ABDUR RASHID SARKER & JEFF GOW, 2016. "Assessment Of Climate Change Impacts On Aman And Boro Rice Yields In Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 1-21, August.
    7. Md. Ruhul Amin & Junbiao Zhang & Mingmei Yang, 2015. "Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    8. Wolfram Schlenker & Michael J. Roberts, 2008. "Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects," NBER Working Papers 13799, National Bureau of Economic Research, Inc.
    9. David Godden & Robert Batterham & Ross Drynan, 1998. "Climate change and Australian wheat yield," Nature, Nature, vol. 391(6666), pages 447-448, January.
    10. World Bank, 2010. "World Development Report 2010," World Bank Publications - Books, The World Bank Group, number 4387, December.
    11. Md. Abdur Rashid Sarker & Khorshed Alam & Jeff Gow, 2014. "Assessing the effects of climate change on rice yields: An econometric investigation using Bangladeshi panel data," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 405-416.
    12. S. Asseng & F. Ewert & P. Martre & R. P. Rötter & D. B. Lobell & D. Cammarano & B. A. Kimball & M. J. Ottman & G. W. Wall & J. W. White & M. P. Reynolds & P. D. Alderman & P. V. V. Prasad & P. K. Agga, 2015. "Rising temperatures reduce global wheat production," Nature Climate Change, Nature, vol. 5(2), pages 143-147, February.
    13. Roger Gifford & John Angus & Damian Barrett & John Passioura & Howard Rawson & Richard Richards & Maarten Stapper & Jeff Wood, 1998. "Climate change and Australian wheat yield," Nature, Nature, vol. 391(6666), pages 448-449, January.
    14. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    15. Alauddin, Mohammad & Sarker, Md Abdur Rashid, 2014. "Climate change and farm-level adaptation decisions and strategies in drought-prone and groundwater-depleted areas of Bangladesh: an empirical investigation," Ecological Economics, Elsevier, vol. 106(C), pages 204-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Islam, Zeenatul & Tisdell, Clement, 2020. "Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations," Land Use Policy, Elsevier, vol. 91(C).
    2. Clement Tisdell & Mohammad Alauddin & Md. Abdur Rashid Sarker & Md Anwarul Kabir, 2019. "Agricultural Diversity and Sustainability: General Features and Bangladeshi Illustrations," Sustainability, MDPI, vol. 11(21), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan, M. Mehedi & Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Jakaria, Mohammad & Alamgir, Mahiuddin, 2019. "Climate sensitivity of wheat yield in Bangladesh: Implications for the United Nations sustainable development goals 2 and 6," Land Use Policy, Elsevier, vol. 87(C).
    2. M. MEHEDI HASAN & Md. ABDUR RASHID SARKER & JEFF GOW, 2016. "Assessment Of Climate Change Impacts On Aman And Boro Rice Yields In Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 1-21, August.
    3. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
    4. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    5. Zeenatul Islam & Mohammad Alauddin & Md. Abdur Rashid Sarker, 2017. "Farmers’ perception on climate change-driven rice production loss in drought-prone and groundwater-depleted areas of Bangladesh: An ordered probit analysis," Discussion Papers Series 579, School of Economics, University of Queensland, Australia.
    6. Sanzidur Rahman, 2017. "Climate, Agroecology and Socio-Economic Determinants of Food Availability from Agriculture in Bangladesh, (1948–2008)," Sustainability, MDPI, vol. 9(3), pages 1-19, February.
    7. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    8. Isaure Delaporte & Mathilde Maurel, 2018. "Adaptation to climate change in Bangladesh," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 49-62, January.
    9. V. Saravanakumar, "undated". "Impact of Climate Change on Yield of Major Food Crops in Tamil Nadu, India," Working papers 91, The South Asian Network for Development and Environmental Economics.
    10. Hossain, Mohammad Shakhawat & Arshad, Muhammad & Qian, Lu & Zhao, Minjuan & Mehmood, Yasir & Kächele, Harald, 2019. "Economic impact of climate change on crop farming in Bangladesh: An application of Ricardian method," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    11. Saumya Verma & Shreekant Gupta & Partha Sen, 2020. "Does climate change make foodgrain yields more unpredictable? Evidence from India," Working papers 305, Centre for Development Economics, Delhi School of Economics.
    12. Khanal, Uttam & Wilson, Clevo & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farmers' Adaptation to Climate Change, Its Determinants and Impacts on Rice Yield in Nepal," Ecological Economics, Elsevier, vol. 144(C), pages 139-147.
    13. Khadiya Aktar Maya & Md. Abdur Rashid Sarker & Jeff Gow, 2019. "Factors Influencing Rice Farmers’ Adaptation Strategies To Climate Change And Extreme Weather Event Impacts In Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 1-18, August.
    14. Alauddin, Mohammad & Tisdell, Clement & Sarker, Md. Abdur Rashid, 2021. "Do trends in Bangladeshi rice yields support Conway’s hypotheses about the consequences of modern agroecosystems?," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 342-354.
    15. Shahbaz Bhatti & Sarfraz Hassan & Khalid Mushtaq & Kamran Javed, 2020. "Investigation The Impact Of Climate Change On Productivity Of Cotton: Empirical Evidence From Cotton Zone," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 1-4, February.
    16. Joshi, Niraj Prakash & Maharjan, Keshav Lall & Piya, Luni, 2011. "Effect of climate variables on yield of major food-crops in Nepal -A time-series analysis-," MPRA Paper 35379, University Library of Munich, Germany.
    17. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    18. Zhenhuan Liu & Guojie Zhang & Peng Yang, 2016. "Geographical Variation of Climate Change Impact on Rice Yield in the Rice-Cropping Areas of Northeast China during 1980–2008," Sustainability, MDPI, vol. 8(7), pages 1-12, July.
    19. Pablo Juan Cárdenas-García & Alejandro Alcalá-Ordoñez, 2023. "Tourism and Development: The Impact of Sustainability—Comparative Case Analysis," Sustainability, MDPI, vol. 15(2), pages 1-10, January.
    20. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.

    More about this item

    Keywords

    Climate change; Wheat; Panel data; Food security; Sustainable water management Bangladesh;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uq2004:599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SOE IT (email available below). General contact details of provider: https://edirc.repec.org/data/decuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.