IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects

  • Wolfram Schlenker
  • Michael J. Roberts

The United States produces 41% of the world's corn and 38% of the world's soybeans, so any impact on US crop yields will have implications for world food supply. We pair a panel of county-level crop yields in the US with a fine-scale weather data set that incorporates the whole distribution of temperatures between the minimum and maximum within each day and across all days in the growing season. Yields increase in temperature until about 29C for corn, 30C for soybeans, and 32C for cotton, but temperatures above these thresholds become very harmful. The slope of the decline above the optimum is significantly steeper than the incline below it. The same nonlinear and asymmetric relationship is found whether we consider time series or cross-sectional variation in weather and yields. This suggests limited potential for adaptation within crop species because the latter includes farmers' adaptations to warmer climates and the former does not. Area-weighted average yields given current growing regions are predicted to decrease by 31-43% under the slowest warming scenario and 67-79% under the most rapid warming scenario by the end of the century.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 13799.

in new window

Date of creation: Feb 2008
Date of revision:
Handle: RePEc:nbr:nberwo:13799
Note: EEE
Contact details of provider: Postal:
National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.

Phone: 617-868-3900
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Michael Greenstone & Olivier Deschenes, 2006. "The Economic Impacts of Climate Change: Evidence from Agricultural Profits and Random Fluctuations in Weather," Working Papers 2006.6, Fondazione Eni Enrico Mattei.
  2. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  3. Kelly, David L. & Kolstad, Charles D. & Mitchell, Glenn T., 2005. "Adjustment costs from environmental change," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 468-495, November.
  4. Campbell, Sean D. & Diebold, Francis X., 2004. "Weather forecasting for weather derivatives," CFS Working Paper Series 2004/10, Center for Financial Studies (CFS).
  5. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
  6. Olivier DeschĂȘnes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
  7. Beach, Robert H. & Thomson, Allison M. & McCarl, Bruce A., 2010. "Climate Change Impacts On Us Agriculture," Proceedings Issues, 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart- Hohenheim, Germany 91393, International Agricultural Trade Research Consortium.
  8. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-71, September.
  9. Christopher Timmins, 2006. "Endogenous Land use and the Ricardian Valuation of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(1), pages 119-142, 01.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:13799. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.