IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/15558.html
   My bibliography  Save this paper

Climate Variability and Water Infrastructure: Historical Experience in the Western United States

Author

Listed:
  • Zeynep K. Hansen
  • Gary D. Libecap
  • Scott E. Lowe

Abstract

Greater historical perspective is needed to enlighten current debate about future human responses to higher temperatures and increased precipitation variation. We analyze the impact of climatic conditions and variability on agricultural production in five semi-arid western states. We assemble county-level data on dams and other major water infrastructure; agricultural crop mixes and yields; precipitation and temperature; soil quality, and topography. Using this extensive data set, we analyze the impact of water infrastructure investments on crop mix and yields in affected counties relative to similarly-endowed counties that lack such infrastructure. We find that water infrastructure smoothes agricultural crop production and increases the likelihood of a successful harvest, especially during times of severe drought or excessive precipitation.

Suggested Citation

  • Zeynep K. Hansen & Gary D. Libecap & Scott E. Lowe, 2009. "Climate Variability and Water Infrastructure: Historical Experience in the Western United States," NBER Working Papers 15558, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:15558
    Note: DAE EEE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w15558.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Deschenes, Olivier & Greenstone, Michael, 2004. "The Economic Impacts of Climate Change: Evidence from Agricultural Profits and Random Fluctuations in Weather," University of California at Santa Barbara, Economics Working Paper Series qt6w7242cj, Department of Economics, UC Santa Barbara.
    2. Libecap, Gary D. & Hansen, Zeynep Kocabiyik, 2002. "“Rain Follows The Plow” And Dryfarming Doctrine: The Climate Information Problem And Homestead Failure In The Upper Great Plains, 1890–1925," The Journal of Economic History, Cambridge University Press, vol. 62(1), pages 86-120, March.
    3. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    4. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    5. Reilly, John, 1999. "What Does Climate Change Mean for Agriculture in Developing Countries? A Comment on Mendelsohn and Dinar," The World Bank Research Observer, World Bank, vol. 14(2), pages 295-305, August.
    6. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    7. Jamie Sanderson & Sardar M. N. Islam, 2007. "Climate Change and Economic Development," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-59012-0, December.
    8. Paul Collier & Gordon Conway & Tony Venables, 2008. "Climate change and Africa," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 24(2), pages 337-353, Summer.
    9. Quiroga, Sonia & Iglesias, Ana, 2007. "Projections of economic impacts of climate change in agriculture in Europe," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 7(14), pages 1-18.
    10. Herminia A. Francisco, 2008. "Adaptation to Climate Change Needs and Opportunities in Southeast Asia," EEPSEA Special and Technical Paper sp200808s1, Economy and Environment Program for Southeast Asia (EEPSEA), revised Aug 2008.
    11. Clarke Harry, 2008. "Classical decision rules and adaptation to climate change ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(4), pages 487-504, December.
    12. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    14. Olmstead, Alan L., 1999. "Biological Innovation And American Agricultural Development," 1999 Conference (43th), January 20-22, 1999, Christchurch, New Zealand 124504, Australian Agricultural and Resource Economics Society.
    15. Hansen, Christian B., 2007. "Generalized least squares inference in panel and multilevel models with serial correlation and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 670-694, October.
    16. Quiggin, John C. & Horowitz, John K., 2003. "Costs of adjustment to climate change," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(4), pages 1-18.
    17. Wolfram Schlenker & Michael J. Roberts, 2008. "Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects," NBER Working Papers 13799, National Bureau of Economic Research, Inc.
    18. Kelly, David L. & Kolstad, Charles D. & Mitchell, Glenn T., 2005. "Adjustment costs from environmental change," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 468-495, November.
    19. Cline, William R, 1996. "The Impact of Global Warming on Agriculture: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1309-1311, December.
    20. Mendelsohn, Robert & Seo, Niggol, 2007. "Changing farm types and irrigation as an adaptation to climate change in Latin American agriculture," Policy Research Working Paper Series 4161, The World Bank.
    21. Kurukulasuriya, Pradeep & Mendelsohn, Robert, 2008. "How will climate change shift agro-ecological zones and impact African agriculture ?," Policy Research Working Paper Series 4717, The World Bank.
    22. Wang, Jinxia & Mendelsohn, Robert & Dinar, Ariel & Huang, Jikun & Rozelle, Scott & Zhang, Lijuan, 2008. "Can China continue feeding itself ? the impact of climate change on agriculture," Policy Research Working Paper Series 4470, The World Bank.
    23. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    24. Kingwell, Ross S., 2006. "Climate change in Australia: agricultural impacts and adaptation," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smith, Steven M., 2018. "From decentralized to centralized irrigation management," Journal of Economic Behavior & Organization, Elsevier, vol. 151(C), pages 62-87.
    2. Xie, Yang & Zilberman, David, 2015. "Water-Storage Capacities versus Water-Use Efficiency: Substitutes or Complements?," 2015 Conference, August 9-14, 2015, Milan, Italy 211894, International Association of Agricultural Economists.
    3. Esha Zaveri & Jason Russ & Amjad Khan & Richard Damania & Edoardo Borgomeo & Anders Jägerskog, 2021. "Ebb and Flow, Volume 1," World Bank Publications - Books, The World Bank Group, number 36089.
    4. Xu, Kun, 2015. "城市水基础设施与地区收入差异分析 [Study On the Relationship Between Water Infrastructure in Urban and Regional Income Difference]," MPRA Paper 71077, University Library of Munich, Germany.
    5. Hansen, Zeynep K. & Lowe, Scott E. & Xu, Wenchao, 2014. "Long-term impacts of major water storage facilities on agriculture and the natural environment: Evidence from Idaho (U.S.)," Ecological Economics, Elsevier, vol. 100(C), pages 106-118.
    6. Ian Wing & Karen Fisher-Vanden, 2013. "Confronting the challenge of integrated assessment of climate adaptation: a conceptual framework," Climatic Change, Springer, vol. 117(3), pages 497-514, April.
    7. Omar Chisari & Sebastian Galiani & Sebastian Miller, 2013. "Optimal Adaptation and Mitigation to Climate Change in Small Environmental Economies," Research Department Publications IDB-WP-417, Inter-American Development Bank, Research Department.
    8. Richard Hornbeck & Pinar Keskin, 2011. "The Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Climate," NBER Working Papers 17625, National Bureau of Economic Research, Inc.
    9. Olmstead, Sheila M., 2014. "Climate change adaptation and water resource management: A review of the literature," Energy Economics, Elsevier, vol. 46(C), pages 500-509.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Butsic & Ellen Hanak & Robert G. Valletta, 2008. "Climate change and asset prices: hedonic estimates for North American ski resorts," Working Paper Series 2008-12, Federal Reserve Bank of San Francisco.
    2. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    3. Fisher, Anthony, 2014. "Climate Science and Climate Economics," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt746627gz, Department of Agricultural & Resource Economics, UC Berkeley.
    4. Frederick Quaye & Denis Nadolnyak & Valentina Hartarska, 2018. "Climate Change Impacts on Farmland Values in the Southeast United States," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
    5. Howard, Peter & Sterner, Thomas, 2014. "Raising the Temperature on Food Prices: Climate Change, Food Security, and the Social Cost of Carbon," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170648, Agricultural and Applied Economics Association.
    6. Sheng, Yu & Zhao, Shiji & Yang, Sansi, 2021. "Weather shocks, adaptation and agricultural TFP: A cross-region comparison of Australian Broadacre farms," Energy Economics, Elsevier, vol. 101(C).
    7. David Albouy & Walter Graf & Ryan Kellogg & Hendrik Wolff, 2016. "Climate Amenities, Climate Change, and American Quality of Life," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 205-246.
    8. Brian Chi-ang Lin & Siqi Zheng & Xiangzheng Deng & Zhan Wang & Chunhong Zhao, 2016. "Economic Evolution In China Ecologically Fragile Regions," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 552-576, July.
    9. Salvatore Di Falco & Mahmud Yesuf & Gunnar Kohlin & Claudia Ringler, 2012. "Estimating the Impact of Climate Change on Agriculture in Low-Income Countries: Household Level Evidence from the Nile Basin, Ethiopia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 457-478, August.
    10. BEN ZAIED, YOUNES & Zouabi, Oussama, 2015. "Climate change impacts on agriculture: A panel cointegration approach and application to Tunisia," MPRA Paper 64711, University Library of Munich, Germany.
    11. McCarl, Bruce A. & Attavanich, Witsanu & Musumba, Mark & Mu, Jianhong E. & Aisabokhae, Ruth, 2011. "Land Use and Climate Change," MPRA Paper 83993, University Library of Munich, Germany, revised 2014.
    12. Fisher, A. C & Le, P. V, 2014. "Climate Policy: Science, Economics, and Extremes," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6tj3j4jb, Department of Agricultural & Resource Economics, UC Berkeley.
    13. De Salvo, Maria & Raffaelli, Roberta & Moser, Riccarda, 2013. "The impact of climate change on permanent crops in an Alpine region: A Ricardian analysis," Agricultural Systems, Elsevier, vol. 118(C), pages 23-32.
    14. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    15. Stefano Giglio & Bryan Kelly & Johannes Stroebel, 2021. "Climate Finance," Annual Review of Financial Economics, Annual Reviews, vol. 13(1), pages 15-36, November.
    16. Farnaz Pourzand & Kendom Bell, 2021. "How climate affects agricultural land values in Aotearoa New Zealand," Working Papers 21_16, Motu Economic and Public Policy Research.
    17. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    18. Balistreri, Edward J. & Tarr, David G., 2011. "Services Liberalization in Preferential Trade Arrangements: The Case of Kenya," Conference papers 332152, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    20. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.

    More about this item

    JEL classification:

    • N5 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries
    • N51 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries - - - U.S.; Canada: Pre-1913
    • N52 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries - - - U.S.; Canada: 1913-
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:15558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.