IDEAS home Printed from https://ideas.repec.org/a/eee/deveco/v162y2023ics0304387823000068.html
   My bibliography  Save this article

Efficient irrigation and water conservation: Evidence from South India

Author

Listed:
  • Fishman, Ram
  • Giné, Xavier
  • Jacoby, Hanan G.

Abstract

Widespread adoption of efficient irrigation technologies, including drip irrigation, has been proposed to limit groundwater over-exploitation, especially in water-stressed South Asia. This paper evaluates the potential productivity and water-saving benefits of smallholder drip irrigation by conducting a randomized control trial in Andhra Pradesh, India. A group of well-owners was offered a subsidy to adopt drip irrigation, while a comparable group acted as controls. After three years, the drip group shifted more into horticultural crops, enjoyed higher farm profit, and transferred (primarily through cash sales) more of its groundwater to adjacent plots. There is no difference in groundwater pumping, which is constrained by electricity rationing in this setting. The evidence thus suggests that drip adoption in South India, while increasing irrigation efficiency, will not save groundwater.

Suggested Citation

  • Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:deveco:v:162:y:2023:i:c:s0304387823000068
    DOI: 10.1016/j.jdeveco.2023.103051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304387823000068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jdeveco.2023.103051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Davis, Lucas W. & Martinez, Sebastian & Taboada, Bibiana, 2020. "How effective is energy-efficient housing? Evidence from a field trial in Mexico," Journal of Development Economics, Elsevier, vol. 143(C).
    2. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    3. Jeffrey M. Peterson & Ya Ding, 2005. "Economic Adjustments to Groundwater Depletion in the High Plains: Do Water-Saving Irrigation Systems Save Water?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 147-159.
    4. van der Kooij, Saskia & Zwarteveen, Margreet & Boesveld, Harm & Kuper, Marcel, 2013. "The efficiency of drip irrigation unpacked," Agricultural Water Management, Elsevier, vol. 123(C), pages 103-110.
    5. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    6. Huffaker, Ray & Whittlesey, Norman, 2000. "The allocative efficiency and conservation potential of water laws encouraging investments in on-farm irrigation technology," Agricultural Economics, Blackwell, vol. 24(1), pages 47-60, December.
    7. Rebecca Taylor & David Zilberman, 2017. "Diffusion of Drip Irrigation: The Case of California," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(1), pages 16-40.
    8. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    9. Meredith Fowlie & Robyn Meeks, 2021. "The Economics of Energy Efficiency in Developing Countries," Review of Environmental Economics and Policy, University of Chicago Press, vol. 15(2), pages 238-260.
    10. Miriam Bruhn & David McKenzie, 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
    11. A. Narayanamoorthy, 2004. "Impact Assessment of Drip Irrigation in India: The Case of Sugarcane," Development Policy Review, Overseas Development Institute, vol. 22, pages 443-462, July.
    12. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    13. Janis M. Carey & David Zilberman, 2002. "A Model of Investment under Uncertainty: Modern Irrigation Technology and Emerging Markets in Water," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 171-183.
    14. Chokri Dridi & Madhu Khanna, 2005. "Irrigation Technology Adoption and Gains from Water Trading under Asymmetric Information," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(2), pages 289-301.
    15. Kumar, D. Suresh & Palanisami, Kuppannan, 2010. "Impact of Drip Irrigation on Farming System: Evidence from Southern India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 23(2), July.
    16. C. Dionisio Pérez-Blanco & Arthur Hrast-Essenfelder & Chris Perry, 2020. "Irrigation Technology and Water Conservation: A Review of the Theory and Evidence," Review of Environmental Economics and Policy, University of Chicago Press, vol. 14(2), pages 216-239.
    17. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    18. Ram Fishman & Upmanu Lall & Vijay Modi & Nikunj Parekh, 2016. "Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 819-855.
    19. Lucas W. Davis & Alan Fuchs & Paul Gertler, 2014. "Cash for Coolers: Evaluating a Large-Scale Appliance Replacement Program in Mexico," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 207-238, November.
    20. Sezen, S. Metin & Yazar, Attila & Eker, Salim, 2006. "Effect of drip irrigation regimes on yield and quality of field grown bell pepper," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 115-131, March.
    21. Nicholas Ryan & Anant Sudarshan, 2022. "Rationing the Commons," Journal of Political Economy, University of Chicago Press, vol. 130(1), pages 210-257.
    22. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    23. Xavier Giné & Hanan G. Jacoby, 2020. "Contracting under uncertainty: Groundwater in South India," Quantitative Economics, Econometric Society, vol. 11(1), pages 399-435, January.
    24. Lucas W. Davis, 2008. "Durable goods and residential demand for energy and water: evidence from a field trial," RAND Journal of Economics, RAND Corporation, vol. 39(2), pages 530-546, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mattoussi, Wided & Mattoussi, Foued & Larnaout, Afrah, 2023. "Optimal subsidization for the adoption of new irrigation technologies," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1126-1141.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    2. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    3. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    4. Danso, G.K. & Jeffrey, S.R. & Dridi, C. & Veeman, T., 2021. "Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta, Canada," Agricultural Water Management, Elsevier, vol. 253(C).
    5. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    6. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    7. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    8. Olen, Beau & Wu, JunJie & Langpap, Christian, 2012. "Crop-specific Irrigation Choices for Major Crops on the West Coast: Water Scarcity and Climatic Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124843, Agricultural and Applied Economics Association.
    9. Christine Heumesser & Sabine Fuss & Jana Szolgayová & Franziska Strauss & Erwin Schmid, 2012. "Investment in Irrigation Systems under Precipitation Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3113-3137, September.
    10. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    11. Taylor, Rebecca & Zilberman, David, 2015. "The Diffusion of Process Innovation: The Case of Drip Irrigation in California," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205320, Agricultural and Applied Economics Association.
    12. Li, Haoyang & Zhao, Jinhua, 2018. "What Drives (No) Adoption of New Irrigation Technologies: A Structural Dynamic Estimation Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274474, Agricultural and Applied Economics Association.
    13. Meeks, Robyn C. & Omuraliev, Arstan & Isaev, Ruslan & Wang, Zhenxuan, 2023. "Impacts of electricity quality improvements: Experimental evidence on infrastructure investments," Journal of Environmental Economics and Management, Elsevier, vol. 120(C).
    14. Lichtenberg, Erik, 2013. "Optimal Investment in Precision Irrigation Systems: A Dynamic Intraseasonal Approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149920, Agricultural and Applied Economics Association.
    15. Pokhrel, Bijay & Krishna, Paudel & Eduardo, Segarra, 2016. "Factors Affecting the Choice, Intensity, and Allocation of Irrigation Technologies by U.S. Cotton Farmers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230199, Southern Agricultural Economics Association.
    16. Wang, Tong & Park, Seong & Jin, Hailong, 2016. "Will Farmers Save Water? A Theoretical Analysis of Groundwater Conservation Policies for Ogallala Aquifer," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229904, Southern Agricultural Economics Association.
    17. Chan, Nathan W. & Globus-Harris, Isla, 2023. "On consumer incentives for energy-efficient durables," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    18. Kenichi Mizobuchi & Kenji Takeuchi, 2019. "Rebound effect across seasons: evidence from the replacement of air conditioners in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(1), pages 123-140, January.
    19. Konstantinos Chatzimichael & Dimitris Christopoulos & Spiro Stefanou & Vangelis Tzouvelekas, 2020. "Irrigation practices, water effectiveness and productivity measurement [Toward an understanding of technology adoption: risk, learning, and neighborhood effects]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 467-498.
    20. Susanne Scheierling & David O. Treguer & James F. Booker, 2016. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.

    More about this item

    Keywords

    Water-saving technology; Groundwater depletion; Agricultural productivity;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:deveco:v:162:y:2023:i:c:s0304387823000068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/devec .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.