IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v67y2014i2p189-208.html
   My bibliography  Save this article

Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence

Author

Listed:
  • Pfeiffer, Lisa
  • Lin, C.-Y. Cynthia

Abstract

Encouraging the use of more efficient irrigation technology is often viewed as an effective, politically feasible method to reduce the consumptive use of water for agricultural production. Despite its pervasive recommendation, it is not clear that increasing irrigation efficiency will lead to water conservation in practice. In this paper, we evaluate the effect of a widespread conversion from traditional center pivot irrigation systems to higher efficiency dropped-nozzle center pivot systems that has occurred in western Kansas. State and national cost-share programs subsidized the conversion. On an average, the intended reduction in groundwater use did not occur; the shift to more efficient irrigation technology has increased groundwater extraction, in part due to shifting crop patterns.

Suggested Citation

  • Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
  • Handle: RePEc:eee:jeeman:v:67:y:2014:i:2:p:189-208
    DOI: 10.1016/j.jeem.2013.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069613001095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2013.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Williams, Jeffery R. & Llewelyn, Richard V. & Reed, Matthew S. & Lamm, Freddie R. & DeLano, Daniel R., 1996. "Net Returns for Grain Sorghum and Corn under Alternative Irrigation Systems in Western Kansas," Staff Papers 118003, Kansas State University, Department of Agricultural Economics.
    2. Norman K. Whittlesey & Ray G. Huffaker, 1995. "Water Policy Issues for the Twenty-first Century," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(5), pages 1199-1203.
    3. John M. Antle & Susan M. Capalbo, 2001. "Econometric-Process Models for Integrated Assessment of Agricultural Production Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(2), pages 389-401.
    4. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    5. David L. Greene & James R. Kahn & Robert C. Gibson, 1999. "Fuel Economy Rebound Effect for U.S. Household Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-31.
    6. Jeffrey M. Peterson & Ya Ding, 2005. "Economic Adjustments to Groundwater Depletion in the High Plains: Do Water-Saving Irrigation Systems Save Water?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 147-159.
    7. Papke, Leslie E. & Wooldridge, Jeffrey M., 2008. "Panel data methods for fractional response variables with an application to test pass rates," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 121-133, July.
    8. Ellis, John R. & Lacewell, Ronald D. & Reneau, Duane R., 1985. "Estimated Economic Impact From Adoption Of Water-Related Agricultural Technology," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 10(2), pages 1-15, December.
    9. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    10. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    11. Cragg, John G, 1971. "Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods," Econometrica, Econometric Society, vol. 39(5), pages 829-844, September.
    12. Edgar G. Hertwich, 2005. "Consumption and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 1-6, January.
    13. Huffaker, Ray & Whittlesey, Norman, 2000. "The allocative efficiency and conservation potential of water laws encouraging investments in on-farm irrigation technology," Agricultural Economics, Blackwell, vol. 24(1), pages 47-60, December.
    14. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    15. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    16. Georgina Moreno & David L. Sunding, 2005. "Joint Estimation of Technology Adoption and Land Allocation with Implications for the Design of Conservation Policy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1009-1019.
    17. Khanna, Madhu & Isik, Murat & Zilberman, David, 2002. "Cost-effectiveness of alternative green payment policies for conservation technology adoption with heterogeneous land quality," Agricultural Economics, Blackwell, vol. 27(2), pages 157-174, August.
    18. Hendricks, Nathan P. & Peterson, Jeffrey M., 2012. "Fixed Effects Estimation of the Intensive and Extensive Margins of Irrigation Water Demand," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(1), pages 1-19, April.
    19. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    20. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    21. Castellazzi, M.S. & Wood, G.A. & Burgess, P.J. & Morris, J. & Conrad, K.F. & Perry, J.N., 2008. "A systematic representation of crop rotations," Agricultural Systems, Elsevier, vol. 97(1-2), pages 26-33, April.
    22. Negri, Donald H. & Brooks, Douglas H., 1990. "Determinants Of Irrigation Technology Choice," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-12, December.
    23. Erik Lichtenberg, 1989. "Land Quality, Irrigation Development, and Cropping Patterns in the Northern High Plains," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(1), pages 187-194.
    24. Schaible, Glenn D. & Kim, C.S. & Whittlesey, Norman K., 1991. "Water Conservation Potential From Irrigation Technology Transitions In The Pacific Northwest," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 16(2), pages 1-13, December.
    25. repec:ags:jrapmc:122312 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    2. Lichtenberg, Erik, 2013. "Optimal Investment in Precision Irrigation Systems: A Dynamic Intraseasonal Approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149920, Agricultural and Applied Economics Association.
    3. Danso, G.K. & Jeffrey, S.R. & Dridi, C. & Veeman, T., 2021. "Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta, Canada," Agricultural Water Management, Elsevier, vol. 253(C).
    4. Pokhrel, Bijay & Krishna, Paudel & Eduardo, Segarra, 2016. "Factors Affecting the Choice, Intensity, and Allocation of Irrigation Technologies by U.S. Cotton Farmers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230199, Southern Agricultural Economics Association.
    5. Olen, Beau & Wu, JunJie & Langpap, Christian, 2012. "Crop-specific Irrigation Choices for Major Crops on the West Coast: Water Scarcity and Climatic Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124843, Agricultural and Applied Economics Association.
    6. Li, Haoyang & Zhao, Jinhua, 2016. "Rebound Effect of Irrigation Technologies? The Role of Water Rights," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235966, Agricultural and Applied Economics Association.
    7. Alcon, Francisco & Tapsuwan, Sorada & Martínez-Paz, José M. & Brouwer, Roy & de Miguel, María D., 2014. "Forecasting deficit irrigation adoption using a mixed stakeholder assessment methodology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 183-193.
    8. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    9. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    10. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    11. César Salazar & John Rand, 2016. "Production risk and adoption of irrigation technology: evidence from small-scale farmers in Chile," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-37, December.
    12. Karina Schoengold & David L. Sunding, 2014. "The impact of water price uncertainty on the adoption of precision irrigation systems," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 729-743, November.
    13. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    14. Gonzalo Villa-Cox & Paul Herrera & Ramón Villa-Cox & Elvia Merino-Gaibor, 2017. "Small and Mid-Sized Farmer Irrigation Adoption in the Context of Public Provision of Hydric Infrastructure in Latin America and Caribbean," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4617-4631, November.
    15. Moreno, Georgina & Sunding, David L., 2003. "Simultaneous Estimation Of Technology Adoption And Land Allocation," 2003 Annual meeting, July 27-30, Montreal, Canada 22134, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
    17. Morgan, Stephen N. & Mason, Nicole M. & Levine, N. Kendra & Zulu-Mbata, Olipa, 2019. "Dis-incentivizing sustainable intensification? The case of Zambia’s maize-fertilizer subsidy program," World Development, Elsevier, vol. 122(C), pages 54-69.
    18. Lichtenberg, Erik & Majsztrik, John & Saavoss, Monica, 2014. "Willingness to Pay for Sensor-Controlled Irrigation," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 168211, Agricultural and Applied Economics Association.
    19. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    20. Mason, N. & Morgan, S. & Levine, N.K. & Zulu-Mbata, O., 2018. "Dis-incentivizing sustainable intensification? The case of Zambia s fertilizer subsidy program," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277491, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:67:y:2014:i:2:p:189-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.