IDEAS home Printed from https://ideas.repec.org/a/ags/jlaare/122312.html
   My bibliography  Save this article

Fixed Effects Estimation of the Intensive and Extensive Margins of Irrigation Water Demand

Author

Listed:
  • Hendricks, Nathan P.
  • Peterson, Jeffrey M.

Abstract

Irrigation water demand is estimated using field-level panel data from Kansas over 16 years. The cost of pumping varies over time due to changes in energy prices and across space due to differences in the depth to water. Exploiting this variation allows us to estimate the demand elasticity while controlling for field-farmer and year fixed effects. Fixed effects also allow us to control for land use without an instrument or assumptions about the distribution of errors. Our estimates of water demand are used to calculate the cost of reducing irrigation water use through water pricing, irrigation cessation, and intensity-reduction programs.

Suggested Citation

  • Hendricks, Nathan P. & Peterson, Jeffrey M., 2012. "Fixed Effects Estimation of the Intensive and Extensive Margins of Irrigation Water Demand," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(1), April.
  • Handle: RePEc:ags:jlaare:122312
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/122312
    Download Restriction: no

    References listed on IDEAS

    as
    1. Wickens, Michael R, 1972. "A Note on the Use of Proxy Variables," Econometrica, Econometric Society, vol. 40(4), pages 759-761, July.
    2. Cameron,A. Colin & Trivedi,Pravin K., 2008. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9787111235767, May.
    3. Beattie, Bruce R., 1981. "Irrigated Agriculture And The Great Plains: Problems And Policy Alternatives," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 6(02), December.
    4. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    5. Nataraj, Shanthi & Hanemann, W. Michael, 2011. "Does marginal price matter? A regression discontinuity approach to estimating water demand," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 198-212, March.
    6. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    7. Jeffrey M. Peterson & Ya Ding, 2005. "Economic Adjustments to Groundwater Depletion in the High Plains: Do Water-Saving Irrigation Systems Save Water?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 147-159.
    8. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    9. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    10. Angrist, Joshua D, 2001. "Estimations of Limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 2-16, January.
    11. Angrist, Joshua D, 2001. "Estimations of Limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 27-28, January.
    12. Sheila M. Olmstead, 2010. "The Economics of Managing Scarce Water Resources," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(2), pages 179-198, Summer.
    13. Wang, Chenggang & Segarra, Eduardo, 2011. "The Economics of Commonly Owned Groundwater When User Demand Is Perfectly Inelastic," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(1), April.
    14. AfDB AfDB, . "AfDB Group Annual Report 2008," Annual Report, African Development Bank, number 64 edited by Koua Louis Kouakou.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quintana-Ashwell, Nicolas E. & Peterson, Jeffrey M., 2014. "The Dynamic Impact of Technical Progress on Common-pool Groundwater Use and Depletion," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196891, Southern Agricultural Economics Association.
    2. McFadden, Jonathan R., 2015. "Essays on climate change adaptation and biotechnologies in U.S. agriculture," ISU General Staff Papers 201501010800005635, Iowa State University, Department of Economics.
    3. repec:wsi:wepxxx:v:03:y:2017:i:04:n:s2382624x16500296 is not listed on IDEAS
    4. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    5. Hrozencik, Robert Aaron & Manning, Dale T., 2016. "Groundwater Management Policy Evaluation with a Spatial-Dynamic Hydro-Economic Modelling Framework," 2016 Annual Meeting, July 31-August 2, 2016, Boston, Massachusetts 236116, Agricultural and Applied Economics Association.
    6. Suarez, Federico & Fulginiti, Lilyan & Perrin, Richard, 2015. "The Value of Water in Agriculture: The U.S. High Plains Aquifer," 2015 Conference, August 9-14, 2015, Milan, Italy 211644, International Association of Agricultural Economists.
    7. Shanxia Sun & Juan P. Sesmero & Karina Schoengold, 2016. "The role of common pool problems in irrigation inefficiency: a case study in groundwater pumping in Mexico," Agricultural Economics, International Association of Agricultural Economists, vol. 47(1), pages 117-127, January.
    8. Li, Haoyang & Zhao, Jinhua, 2016. "Rebound Effect of Irrigation Technologies? The Role of Water Rights," 2016 Annual Meeting, July 31-August 2, 2016, Boston, Massachusetts 235966, Agricultural and Applied Economics Association.
    9. Xie, Yang & Zilberman, David, 2015. "Water-Storage Capacities versus Water-Use Efficiency: Substitutes or Complements?," 2015 Conference, August 9-14, 2015, Milan, Italy 211894, International Association of Agricultural Economists.
    10. Savage, Jeff & Ifft, Jennifer, 2015. "The Impact of Irrigation Restrictions on Cropland Values in Nebraska," Working Papers 250021, Cornell University, Department of Applied Economics and Management.
    11. Jose M. Yorobe Jr. & Jauhar Ali & Valerien O. Pede & Roderick M. Rejesus & Orlee. P. Velarde & Huaiyu Wang, 2016. "Yield and income effects of rice varieties with tolerance of multiple abiotic stresses: the case of green super rice (GSR) and flooding in the Philippines," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 261-271, May.
    12. Yorobe, Jose Jr & Pede, Valerien & Rejesus, Roderick & Velarde, Orlee & Wang, Huaiyu & Ali, Jauhar, 2014. "Yield and Income Effects of the Green Super Rice (GSR) Varieties: Evidence from a Fixed-Effects Model in the Philippines," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169635, Agricultural and Applied Economics Association.
    13. McFadden, Jonathan & Miranowski, John, "undated". "Climate Change Impacts on the Intensive and Extensive Margins of US Agricultural Land," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170512, Agricultural and Applied Economics Association.
    14. repec:eee:resene:v:51:y:2018:i:c:p:67-83 is not listed on IDEAS
    15. repec:wsi:wepxxx:v:03:y:2017:i:01:n:s2382624x17500011 is not listed on IDEAS
    16. repec:nbr:nberch:13948 is not listed on IDEAS
    17. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    18. Wang, Tong & Park, Seong & Jin, Hailong, 2016. "Will Farmers Save Water? A Theoretical Analysis of Groundwater Conservation Policies for Ogallala Aquifer," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229904, Southern Agricultural Economics Association.
    19. Quintana-Ashwell, Nicolas E. & Peterson, Jeffrey M., 2015. "Aquifer Depletion in the face of Climate Change and Technical Progress," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205882, Agricultural and Applied Economics Association;Western Agricultural Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jlaare:122312. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/waeaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.