IDEAS home Printed from https://ideas.repec.org/a/oup/apecpp/v39y2017i1p16-40..html
   My bibliography  Save this article

Diffusion of Drip Irrigation: The Case of California

Author

Listed:
  • Rebecca Taylor
  • David Zilberman

Abstract

This article provides insights regarding the state of the literature on the economics of drip irrigation adoption and diffusion. Our literature review finds that the methodological approaches to studying diffusion—conceptual modeling, empirical analysis, and historical narratives—are complementary, yet historical analyses have been underemphasized. To address this gap, we conduct a historical analysis of the diffusion of drip irrigation in California. Our forty-five-year narrative highlights that the successful adoption of drip irrigation to diverse crops and locations required (i) coevolution of the technology and complementary production processes, and (ii) joint efforts by private and public experts at the local level.

Suggested Citation

  • Rebecca Taylor & David Zilberman, 2017. "Diffusion of Drip Irrigation: The Case of California," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(1), pages 16-40.
  • Handle: RePEc:oup:apecpp:v:39:y:2017:i:1:p:16-40.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/aepp/ppw026
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olen, Beau & Wu, JunJie, 2015. "Impacts of Water Scarcity and Climate on Land Use for Irrigated Agriculture in the U.S. West Coast," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205719, Agricultural and Applied Economics Association.
    2. Scheierling, Susanne M. & Treguer, David O. & Booker, James F., 2015. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205677, Agricultural and Applied Economics Association.
    3. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    4. Garb, Yaakov & Friedlander, Lonia, 2014. "From transfer to translation: Using systemic understandings of technology to understand drip irrigation uptake," Agricultural Systems, Elsevier, vol. 128(C), pages 13-24.
    5. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    6. Ayars, J.E. & Fulton, A. & Taylor, B., 2015. "Subsurface drip irrigation in California—Here to stay?," Agricultural Water Management, Elsevier, vol. 157(C), pages 39-47.
    7. Susanne Scheierling & David O. Treguer & James F. Booker, 2016. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    8. Olmstead, Alan L. & Rhode, Paul W., 2001. "Reshaping The Landscape: The Impact And Diffusion Of The Tractor In American Agriculture, 1910–1960," The Journal of Economic History, Cambridge University Press, vol. 61(3), pages 663-698, September.
    9. Kan, Iddo & Schwabe, Kurt A. & Knapp, Keith C., 2002. "Microeconomics Of Irrigation With Saline Water," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-24, July.
    10. Uri Shani & Yacov Tsur & Amos Zemel & David Zilberman, 2009. "Irrigation production functions with water‐capital substitution," Agricultural Economics, International Association of Agricultural Economists, vol. 40(1), pages 55-66, January.
    11. Unknown, 2016. "Department Publications 2014," Publications Lists 239845, University of Minnesota, Department of Applied Economics.
    12. Highstreet, Allan & Nuckton, Carole Frank & Horner, Gerald L., 1980. "Agricultural Water Use and Costs in California," Information Series 263854, University of California, Davis, Giannini Foundation.
    13. Christine Heumesser & Sabine Fuss & Jana Szolgayová & Franziska Strauss & Erwin Schmid, 2012. "Investment in Irrigation Systems under Precipitation Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3113-3137, September.
    14. Olmstead, Alan L., 1975. "The Mechanization of Reaping and Mowing in American Agriculture, 1833–1870," The Journal of Economic History, Cambridge University Press, vol. 35(2), pages 327-352, June.
    15. Olmstead, Alan L. & Rhode, Paul W., 1995. "Beyond the Threshold: An Analysis of the Characteristics and Behavior of Early Reaper Adopters," The Journal of Economic History, Cambridge University Press, vol. 55(1), pages 27-57, March.
    16. Gale, Fred & Hansen, James & Jewison, Michael, 2015. "China’s Growing Demand for Agricultural Imports," Economic Information Bulletin 198800, United States Department of Agriculture, Economic Research Service.
    17. Edward K. Y. Chen, 1983. "The Diffusion of Technology," Palgrave Macmillan Books, in: Multinational Corporations, Technology and Employment, chapter 4, pages 69-93, Palgrave Macmillan.
    18. Douglas D. Parker & David Zilberman, 1996. "The use of information services: The case of CIMIS," Agribusiness, John Wiley & Sons, Ltd., vol. 12(3), pages 209-218.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taylor, Rebecca & Zilberman, David, 2015. "The Diffusion of Process Innovation: The Case of Drip Irrigation in California," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205320, Agricultural and Applied Economics Association.
    2. Sarkar, Jayati, 1998. "Technological Diffusion: Alternative Theories and Historical Evidence," Journal of Economic Surveys, Wiley Blackwell, vol. 12(2), pages 131-176, April.
    3. Luca Di Corato & Tsegaye Ginbo, 2020. "Climate change and coffee farm relocation in Ethiopia: a real-options approach," Working Papers 2020:02, Department of Economics, University of Venice "Ca' Foscari".
    4. Hall, Bronwyn H. & Khan, Beethika, 2003. "Adoption of New Technology," Department of Economics, Working Paper Series qt3wg4p528, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    5. Lewis, Joshua & Severnini, Edson, 2020. "Short- and long-run impacts of rural electrification: Evidence from the historical rollout of the U.S. power grid," Journal of Development Economics, Elsevier, vol. 143(C).
    6. Antras, Pol & Voth, Hans-Joachim, 2003. "Factor prices and productivity growth during the British industrial revolution," Explorations in Economic History, Elsevier, vol. 40(1), pages 52-77, January.
    7. Ferraro, Domenico, 2017. "Volatility and slow technology diffusion," European Economic Review, Elsevier, vol. 96(C), pages 18-37.
    8. Cohen, Daniel R. & Zilberman, David, 1997. "Actual Versus Stated Willingness To Pay: A Comment," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 22(2), pages 1-6, December.
    9. Lew, Byron, 2000. "The Diffusion of Tractors on the Canadian Prairies: The Threshold Model and the Problem of Uncertainty," Explorations in Economic History, Elsevier, vol. 37(2), pages 189-216, April.
    10. Riera, S., 2018. "Measurement of technical efficiency of wine grape producers in Mendoza Argentina," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275995, International Association of Agricultural Economists.
    11. Scott Kaplan & Ben Gordon & Feras El Zarwi & Joan L. Walker & David Zilberman, 2019. "The Future of Autonomous Vehicles: Lessons from the Literature on Technology Adoption," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 583-597, December.
    12. Timothy Bresnahan & Shane Greenstein, 1996. "Technical Progress and Co-invention in Computing and in the Uses of Computers," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(1996 Micr), pages 1-83.
    13. Amir Heiman & Joel Ferguson & David Zilberman, 2020. "Marketing and Technology Adoption and Diffusion," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 21-30, March.
    14. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    15. Raouf Boucekkine & Fernando Del Río & Omar Licandro, 2003. "Embodied Technological Change, Learning‐by‐doing and the Productivity Slowdown," Scandinavian Journal of Economics, Wiley Blackwell, vol. 105(1), pages 87-98, March.
    16. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    17. Arve, Malin & Zwart, Gijsbert, 2023. "Optimal procurement and investment in new technologies under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    18. Marks, Phillipa & Marks, Brian, 2007. "Spectrum Allocation, Spectrum Commons and Public Goods: the Role of the Market," MPRA Paper 6785, University Library of Munich, Germany.
    19. Antonin BERGEAUD & Gilbert Cette & Rémy Lecat, 2017. "What role did education, equipment age and technology play in 20th century productivity growth?," Rue de la Banque, Banque de France, issue 43, may..
    20. Pierre‐Richard Agénor, 2004. "Macroeconomic Adjustment and the Poor: Analytical Issues and Cross‐Country Evidence," Journal of Economic Surveys, Wiley Blackwell, vol. 18(3), pages 351-408, July.

    More about this item

    Keywords

    Drip irrigation; process innovation; technology diffusion; historical analysis;
    All these keywords.

    JEL classification:

    • N52 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries - - - U.S.; Canada: 1913-
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:apecpp:v:39:y:2017:i:1:p:16-40.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.