IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v313y2025ics0378377425001854.html
   My bibliography  Save this article

The biophysical and crop yield effects of irrigation and their changes in China’s drylands

Author

Listed:
  • Zi, Shuangshuang
  • Li, Yan
  • Zhang, Jingwen
  • Hou, Chengcheng
  • Lin, Huiqing
  • Xu, Zhengjie
  • Sang, Shan
  • Dong, Jinwei
  • Fu, Bojie

Abstract

Irrigation is critical for food production, especially in arid and semi-arid regions, and it has complex and interactive effects on local climate, evapotranspiration, and crop growth. Here, we used satellite remote sensing data and statistical models to quantify the biophysical effects of irrigation on land surface temperature (LST), evapotranspiration (ET), crop greenness, and crop yield effects and their spatiotemporal changes in China’s drylands. Results show that during 2001–2012, irrigation in China's drylands led to a significant cooling in daytime LST (-0.52 °C), a weak cooling in nighttime LST (-0.14 °C), and increases in ET (+0.16 mm/d), crop greenness (+0.02) and maize yields (+3.4 ton/ha; 55 %) compared with rainfed croplands. The spatial variations of these irrigation effects were in synergy, driven by irrigation water use and climate conditions, with greater effects in the dry regions with higher irrigation intensity. Temporally, the irrigation cooling effects gradually weakened from 2001 to 2020 (0.08 °C), while the enhanced effects on ET (+0.062 mm/d), crop greenness (+0.006) and maize yields (+720 kg/ha) were still increasing. These divergent changes were mainly driven by declined irrigation water use and increased irrigation water productivity due to adopting water-saving irrigation technologies. This study improves our understanding of the irrigation effects and their responses to changing irrigation practices and climate in water-limited regions.

Suggested Citation

  • Zi, Shuangshuang & Li, Yan & Zhang, Jingwen & Hou, Chengcheng & Lin, Huiqing & Xu, Zhengjie & Sang, Shan & Dong, Jinwei & Fu, Bojie, 2025. "The biophysical and crop yield effects of irrigation and their changes in China’s drylands," Agricultural Water Management, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425001854
    DOI: 10.1016/j.agwat.2025.109471
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Peng Zhu & Jennifer Burney & Jinfeng Chang & Zhenong Jin & Nathaniel D. Mueller & Qinchuan Xin & Jialu Xu & Le Yu & David Makowski & Philippe Ciais, 2022. "Warming reduces global agricultural production by decreasing cropping frequency and yields," Nature Climate Change, Nature, vol. 12(11), pages 1016-1023, November.
    2. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
    3. Muhammad Umair & Tabassum Hussain & Hanbing Jiang & Ayesha Ahmad & Jiawei Yao & Yongqing Qi & Yucui Zhang & Leilei Min & Yanjun Shen, 2019. "Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    4. Lei Qiao & Xuhui Wang & Pete Smith & Jinlong Fan & Yuelai Lu & Bridget Emmett & Rong Li & Stephen Dorling & Haiqing Chen & Shaogui Liu & Tim G. Benton & Yaojun Wang & Yuqing Ma & Rongfeng Jiang & Fusu, 2022. "Soil quality both increases crop production and improves resilience to climate change," Nature Climate Change, Nature, vol. 12(6), pages 574-580, June.
    5. Gao, Xiaoyu & Bai, Yining & Huo, Zailin & Xu, Xu & Huang, Guanhua & Xia, Yuhong & Steenhuis, Tammo S., 2017. "Deficit irrigation enhances contribution of shallow groundwater to crop water consumption in arid area," Agricultural Water Management, Elsevier, vol. 185(C), pages 116-125.
    6. Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
    7. Yu, Qian & Dai, Yulong & Wei, Jun & Wang, Jiaer & Liao, Bin & Cui, Yuanlai, 2024. "Rice yield and water productivity in response to water-saving irrigation practices in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 302(C).
    8. Zhou, Xinyao & Zhang, Yongqiang & Sheng, Zhuping & Manevski, Kiril & Andersen, Mathias N. & Han, Shumin & Li, Huilong & Yang, Yonghui, 2021. "Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework," Agricultural Water Management, Elsevier, vol. 249(C).
    9. Zhang, Chao & Dong, Jinwei & Zuo, Lijun & Ge, Quansheng, 2022. "Tracking spatiotemporal dynamics of irrigated croplands in China from 2000 to 2019 through the synergy of remote sensing, statistics, and historical irrigation datasets," Agricultural Water Management, Elsevier, vol. 263(C).
    10. Xuhui Wang & Christoph Müller & Joshua Elliot & Nathaniel D. Mueller & Philippe Ciais & Jonas Jägermeyr & James Gerber & Patrice Dumas & Chenzhi Wang & Hui Yang & Laurent Li & Delphine Deryng & Christ, 2021. "Global irrigation contribution to wheat and maize yield," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Mpanga, Isaac K. & Idowu, Omololu John, 2021. "A Decade of Irrigation Water use trends in Southwestern USA: The Role of Irrigation Technology, Best Management Practices, and Outreach Education Programs," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Payero, José O. & Tarkalson, David D. & Irmak, Suat & Davison, Don & Petersen, James L., 2008. "Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(8), pages 895-908, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Feng & Zheng, Yi & Zhang, Ling & Xiong, Rui & Hu, Zhaoping & Tian, Yong & Li, Xin, 2023. "Simulating drip irrigation in large-scale and high-resolution ecohydrological models: From emitters to the basin," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Sisi Li & Yanhua Zhuang & Hongbin Liu & Zhen Wang & Fulin Zhang & Mingquan Lv & Limei Zhai & Xianpeng Fan & Shiwei Niu & Jingrui Chen & Changxu Xu & Na Wang & Shuhe Ruan & Wangzheng Shen & Menghan Mi , 2023. "Enhancing rice production sustainability and resilience via reactivating small water bodies for irrigation and drainage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zhao, Nan & Zheng, Xinjun & Zhang, Bin & Tian, Shengchuan & Du, Lan & Li, Yan, 2025. "Does water-saving irrigation truly conserve water? Yes and No," Agricultural Water Management, Elsevier, vol. 311(C).
    4. Marilyn S. Painagan & Victor B. Ella, 2022. "Modeling the Impact of Deficit Irrigation on Corn Production," Sustainability, MDPI, vol. 14(16), pages 1-13, August.
    5. Seijger, Chris & Urfels, Anton & Christoforidou, Maria & Hellegers, Petra & Borghuis, Gerlo & Langan, Simon & van Halsema, Gerardo, 2025. "More food, but less land and water for nature: Why agricultural productivity gains did not materialize," Agricultural Water Management, Elsevier, vol. 307(C).
    6. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    7. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    8. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    9. Guo, Baishu & Jin, Gui, 2025. "Beyond the land quantity: Rethinking the role of land quality in agriculture from the efficiency perspective," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
    10. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    11. Wifo, 2023. "WIFO-Monatsberichte, Heft 9/2023," WIFO Monatsberichte (monthly reports), WIFO, vol. 96(9), September.
    12. Ćosić, Marija & Djurović, Nevenka & Todorović, Mladen & Maletić, Radojka & Zečević, Bogoljub & Stričević, Ružica, 2015. "Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper," Agricultural Water Management, Elsevier, vol. 159(C), pages 139-147.
    13. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    14. Mattoussi, Wided & Mattoussi, Foued & Larnaout, Afrah, 2023. "Optimal subsidization for the adoption of new irrigation technologies," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1126-1141.
    15. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    16. Robel Admasu & Abraham W Michael & Tilahun Hordofa, 2019. "Senior Irrigation Researcher, Melkassa Agricultural Research Center, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 83-87, January.
    17. Sun, Xuguang & Zhang, Baoyuan & Dai, Menglei & Jing, Cuijiao & Ma, Kai & Tang, Boyi & Li, Kejiang & Dang, Hongkai & Gu, Limin & Zhen, Wenchao & Gu, Xiaohe, 2024. "Accurate irrigation decision-making of winter wheat at the filling stage based on UAV hyperspectral inversion of leaf water content," Agricultural Water Management, Elsevier, vol. 306(C).
    18. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Chilin Wei & Yan Zhu & Jinzhu Zhang & Zhenhua Wang, 2021. "Evaluation of Suitable Mixture of Water and Air for Processing Tomato in Drip Irrigation in Xinjiang Oasis," Sustainability, MDPI, vol. 13(14), pages 1-19, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425001854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.