IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v159y2015icp139-147.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper

Author

Listed:
  • Ćosić, Marija
  • Djurović, Nevenka
  • Todorović, Mladen
  • Maletić, Radojka
  • Zečević, Bogoljub
  • Stričević, Ružica

Abstract

The present paper reports research that focused on the effect of kaolin on the yield, quality and water use efficiency of the sweet pepper Capsicum annuum L., grown under different irrigation regimes. The research was conducted in an open field with carbonate chernozem soil, at Stara Pazova (40km north of Belgrade, Serbia). It lasted for three years (2011, 2012, and 2013). Three irrigation regimes and two kaolin treatments were compared. The irrigation regimes were: (i) full irrigation (F) ensuring 100% of crop evapotranspiration (ETc), (ii) deficit irrigation at 80% ETc (R1), and (iii) deficit irrigation at 70% ETc (R2). The kaolin treatments were: (i) control without kaolin (C) and (ii) treatment with kaolin application (K). The setup was a two-factorial, completely random block system, with three replications. The first factor was the irrigation regime and the second kaolin application.

Suggested Citation

  • Ćosić, Marija & Djurović, Nevenka & Todorović, Mladen & Maletić, Radojka & Zečević, Bogoljub & Stričević, Ružica, 2015. "Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper," Agricultural Water Management, Elsevier, vol. 159(C), pages 139-147.
  • Handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:139-147
    DOI: 10.1016/j.agwat.2015.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antony, Edna & Singandhupe, R. B., 2004. "Impact of drip and surface irrigation on growth, yield and WUE of capsicum (Capsicum annum L.)," Agricultural Water Management, Elsevier, vol. 65(2), pages 121-132, March.
    2. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    3. Sezen, S. Metin & Yazar, Attila & Daşgan, Yıldız & Yucel, Seral & Akyıldız, Asiye & Tekin, Servet & Akhoundnejad, Yelderem, 2014. "Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes," Agricultural Water Management, Elsevier, vol. 143(C), pages 59-70.
    4. Mao, Xuesen & Liu, Mengyu & Wang, Xinyuan & Liu, Changming & Hou, Zhimin & Shi, Jinzhi, 2003. "Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain," Agricultural Water Management, Elsevier, vol. 61(3), pages 219-228, July.
    5. Gadissa, Takele & Chemeda, Desalegn, 2009. "Effects of drip irrigation levels and planting methods on yield and yield components of green pepper (Capsicum annuum, L.) in Bako, Ethiopia," Agricultural Water Management, Elsevier, vol. 96(11), pages 1673-1678, November.
    6. Sezen, S. Metin & Yazar, Attila & Eker, Salim, 2006. "Effect of drip irrigation regimes on yield and quality of field grown bell pepper," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 115-131, March.
    7. Payero, José O. & Tarkalson, David D. & Irmak, Suat & Davison, Don & Petersen, James L., 2008. "Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(8), pages 895-908, August.
    8. Boari, Francesca & Donadio, Antonio & Schiattone, Maria Immacolata & Cantore, Vito, 2015. "Particle film technology: A supplemental tool to save water," Agricultural Water Management, Elsevier, vol. 147(C), pages 154-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    2. Cantore, V. & Lechkar, O. & Karabulut, E. & Sellami, M.H. & Albrizio, R. & Boari, F. & Stellacci, A.M. & Todorovic, M., 2016. "Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.)," Agricultural Water Management, Elsevier, vol. 167(C), pages 53-61.
    3. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    4. Boari, Francesca & Donadio, Antonio & Pace, Bernardo & Schiattone, Maria Immacolata & Cantore, Vito, 2016. "Kaolin improves salinity tolerance, water use efficiency and quality of tomato," Agricultural Water Management, Elsevier, vol. 167(C), pages 29-37.
    5. Yildirim, Demet & Cemek, Bilal & Unlukara, Ali, 2022. "The effect of mulched ridge and furrow micro catchment water harvesting on red pepper yield and quality features in Bafra Plain of Northern Turkey," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    7. Ćosić, Marija & Stričević, Ružica & Djurović, Nevenka & Moravčević, Djordje & Pavlović, Miloš & Todorović, Mladen, 2017. "Predicting biomass and yield of sweet pepper grown with and without plastic film mulching under different water supply and weather conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 91-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Chilin Wei & Yan Zhu & Jinzhu Zhang & Zhenhua Wang, 2021. "Evaluation of Suitable Mixture of Water and Air for Processing Tomato in Drip Irrigation in Xinjiang Oasis," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    4. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    5. Ved Parkash & Sukhbir Singh, 2020. "A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    6. Wang, Han & Xiang, Youzhen & Zhang, Fucang & Tang, Zijun & Guo, Jinjin & Zhang, Xueyan & Hou, Xianghao & Wang, Haidong & Cheng, Minghui & Li, Zhijun, 2022. "Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    7. Indranil Samui & Milan Skalicky & Sukamal Sarkar & Koushik Brahmachari & Sayan Sau & Krishnendu Ray & Akbar Hossain & Argha Ghosh & Manoj Kumar Nanda & Richard W. Bell & Mohammed Mainuddin & Marian Br, 2020. "Yield Response, Nutritional Quality and Water Productivity of Tomato ( Solanum lycopersicum L.) are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    8. Sezen, S. Metin & Yazar, Attila & Daşgan, Yıldız & Yucel, Seral & Akyıldız, Asiye & Tekin, Servet & Akhoundnejad, Yelderem, 2014. "Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes," Agricultural Water Management, Elsevier, vol. 143(C), pages 59-70.
    9. Abd El-Mageed, Taia A. & Semida, Wael M., 2015. "Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.)," Agricultural Water Management, Elsevier, vol. 159(C), pages 1-10.
    10. Cantore, V. & Lechkar, O. & Karabulut, E. & Sellami, M.H. & Albrizio, R. & Boari, F. & Stellacci, A.M. & Todorovic, M., 2016. "Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.)," Agricultural Water Management, Elsevier, vol. 167(C), pages 53-61.
    11. Shin, Jong Hwa & Park, Jong Seok & Son, Jung Eek, 2014. "Estimating the actual transpiration rate with compensated levels of accumulated radiation for the efficient irrigation of soilless cultures of paprika plants," Agricultural Water Management, Elsevier, vol. 135(C), pages 9-18.
    12. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    13. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    14. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    15. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    16. Patanè, C. & Cosentino, S.L., 2010. "Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 97(1), pages 131-138, January.
    17. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Abd El-Wahed, M.H. & Ali, E.A., 2013. "Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit," Agricultural Water Management, Elsevier, vol. 120(C), pages 64-71.
    19. Pedras, C.M.G. & Pereira, L.S. & Gonalves, J.M., 2009. "MIRRIG: A decision support system for design and evaluation of microirrigation systems," Agricultural Water Management, Elsevier, vol. 96(4), pages 691-701, April.
    20. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:139-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.