IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v140y2014icp1-13.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation

Author

Listed:
  • Garg, N.K.
  • Dadhich, Sushmita M.

Abstract

A non-linear optimization model for deficit irrigation is proposed in the present study to maximize the net financial return within the available resource constraints. The deficit levels of irrigation are kept as variables in the model with a flexibility to keep the crops either at full irrigation or deficit irrigation in order to maximize the net financial return. The model optimizes the deficit levels, cropping pattern and decade (10 days) optimal water withdrawals for the existing land and water resources. The proposed model is applied to Khairpur East canal command of the Lower Indus Basin. The overall optimal net financial return was increased by 92.5% and the total optimal cropped area was enhanced by 109.7% under deficit irrigation as compared to the existing cropping pattern although the net financial return per hectare of land was reduced under deficit irrigation. The optimal net financial return can further be increased by 17.5% if the existing tube well capacity is augmented by 75% in the command area. The surface water availability was also reduced to work out its impact on the optimal cropped area. Although the net financial returns reduced with a reduction in the surface water availability but the optimal irrigated cropped area remained almost the same under deficit irrigation. However the cropping pattern and optimal deficit levels of different crops changed as the surface water availability is reduced. Further, a balanced optimal production of crops would require imposing upper and lower constraints on the quantity of the production of crops in place of crop areas under deficit irrigation.

Suggested Citation

  • Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
  • Handle: RePEc:eee:agiwat:v:140:y:2014:i:c:p:1-13
    DOI: 10.1016/j.agwat.2014.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414000808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shyam, Radhey & Chauhan, H. S. & Sharma, J. S., 1994. "Optimal operation scheduling model for a canal system," Agricultural Water Management, Elsevier, vol. 26(3), pages 213-225, November.
    2. Garg, N. K. & Ali, A., 2000. "Groundwater management for Lower Indus Basin," Agricultural Water Management, Elsevier, vol. 42(3), pages 273-290, January.
    3. Garg, N.K. & Dadhich, Sushmita M., 2014. "A proposed method to determine yield response factors of different crops under deficit irrigation using inverse formulation approach," Agricultural Water Management, Elsevier, vol. 137(C), pages 68-74.
    4. Aliasghar Montazar & H. Riazi & S. Behbahani, 2010. "Conjunctive Water Use Planning in an Irrigation Command Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 577-596, February.
    5. Singh, D. K. & Jaiswal, C. S. & Reddy, K. S. & Singh, R. M. & Bhandarkar, D. M., 2001. "Optimal cropping pattern in a canal command area," Agricultural Water Management, Elsevier, vol. 50(1), pages 1-8, August.
    6. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    7. Hussain, Intizar & Marikar, Fuard & Jehangir, Waqar Ahmed, 2000. "Productivity and performance of irrigated wheat farms across canal commands in the Lower Indus Basin," IWMI Research Reports 53024, International Water Management Institute.
    8. Garg, N. K. & Ali, Abbas, 1998. "Two-level optimization model for Lower Indus Basin," Agricultural Water Management, Elsevier, vol. 36(1), pages 1-21, February.
    9. Reca, Juan & Roldan, Jose & Alcaide, Miguel & Lopez, Rafael & Camacho, Emilio, 2001. "Optimisation model for water allocation in deficit irrigation systems: II. Application to the Bembezar irrigation system," Agricultural Water Management, Elsevier, vol. 48(2), pages 117-132, June.
    10. Jin Wang & Guo Cheng & Yi Gao & Ai Long & Zhong Xu & Xin Li & Hongyan Chen & Tom Barker, 2008. "Optimal Water Resource Allocation in Arid and Semi-Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 239-258, February.
    11. Vedula, S. & Mujumdar, P.P. & Chandra Sekhar, G., 2005. "Conjunctive use modeling for multicrop irrigation," Agricultural Water Management, Elsevier, vol. 73(3), pages 193-221, May.
    12. Hussain, Intizar & Marikar, Fuard & Jehangir, Waqar Ahmed, 2000. "Productivity and performance of irrigated wheat farms across canal commands in the Lower Indus Basin," IWMI Research Reports 53023, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    2. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    3. Daneshnia, F. & Amini, A. & Chaichi, M.R., 2015. "Surfactant effect on forage yield and water use efficiency for berseem clover and basil in intercropping and limited irrigation treatments," Agricultural Water Management, Elsevier, vol. 160(C), pages 57-63.
    4. Li, Xiaojuan & Kang, Shaozhong & Niu, Jun & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng, 2017. "Applying uncertain programming model to improve regional farming economic benefits and water productivity," Agricultural Water Management, Elsevier, vol. 179(C), pages 352-365.
    5. Li, Xuemin & Zhang, Jingwen & Cai, Ximing & Huo, Zailin & Zhang, Chenglong, 2023. "Simulation-optimization based real-time irrigation scheduling: A human-machine interactive method enhanced by data assimilation," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.
    7. Mwangi Joseph Kanyua, 2020. "Effect of Imposed Self-Governance on Irrigation Rules Design among Horticultural Producers in Peri-Urban Kenya," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    8. Jin Kathrine Fosli & A. Amarender Reddy & Radhika Rani, 2021. "The Policy of Free Electricity to Agriculture Sector: Implications and Perspectives of the Stakeholders in India," Journal of Development Policy and Practice, , vol. 6(2), pages 252-269, July.
    9. Chongfeng Ren & Hongbo Zhang, 2019. "An Inexact Optimization Model for Crop Area Under Multiple Uncertainties," IJERPH, MDPI, vol. 16(14), pages 1-20, July.
    10. Richwell Mubita Mwiya & Zhanyu Zhang & Chengxin Zheng & Ce Wang, 2020. "Comparison of Approaches for Irrigation Scheduling Using AquaCrop and NSGA-III Models under Climate Uncertainty," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    11. Linker, Raphael, 2020. "Unified framework for model-based optimal allocation of crop areas and water," Agricultural Water Management, Elsevier, vol. 228(C).
    12. Cervantes-Gaxiola, Maritza E. & Sosa-Niebla, Erik F. & Hernández-Calderón, Oscar M. & Ponce-Ortega, José M. & Ortiz-del-Castillo, Jesús R. & Rubio-Castro, Eusiel, 2020. "Optimal crop allocation including market trends and water availability," European Journal of Operational Research, Elsevier, vol. 285(2), pages 728-739.
    13. Vijendra Kumar & S. M. Yadav, 2019. "Optimization of Cropping Patterns Using Elitist-Jaya and Elitist-TLBO Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1817-1833, March.
    14. Aurobrata Das & Bhabagrahi Sahoo & Sudhindra N. Panda, 2020. "Evaluation of Nexus-Sustainability and Conventional Approaches for Optimal Water-Energy-Land-Crop Planning in an Irrigated Canal Command," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2329-2351, June.
    15. Arredondo-Ramírez, Karla & Rubio-Castro, Eusiel & Nápoles-Rivera, Fabricio & Ponce-Ortega, José María & Serna-González, Medardo & El-Halwagi, Mahmoud M., 2015. "Optimal design of agricultural water systems with multiperiod collection, storage, and distribution," Agricultural Water Management, Elsevier, vol. 152(C), pages 161-172.
    16. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    17. Mahdi Sedighkia & Bithin Datta, 2023. "Improving Environmental Water Supply in Wetlands through Optimal Cropping Patterns," Agriculture, MDPI, vol. 13(10), pages 1-17, October.
    18. López-Mata, E. & Tarjuelo, J.M. & Orengo-Valverde, J.J. & Pardo, J.J. & Domínguez, A., 2019. "Irrigation scheduling to maximize crop gross margin under limited water availability," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    20. Wen, Yeqiang & Shang, Songhao & Yang, Jian, 2017. "Optimization of irrigation scheduling for spring wheat with mulching and limited irrigation water in an arid climate," Agricultural Water Management, Elsevier, vol. 192(C), pages 33-44.
    21. Sadeghi, Seyed Hamidreza & Sharifi Moghadam, Ehsan & Delavar, Majid & Zarghami, Mahdi, 2020. "Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale," Agricultural Water Management, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shu & Shao, Dongguo & Gu, Wenquan & Xu, Baoli & Li, Haoxin & Fang, Longzhang, 2017. "An interval multistage water allocation model for crop different growth stages under inputs uncertainty," Agricultural Water Management, Elsevier, vol. 186(C), pages 86-97.
    2. Singh, Ajay & Panda, Sudhindra Nath, 2012. "Development and application of an optimization model for the maximization of net agricultural return," Agricultural Water Management, Elsevier, vol. 115(C), pages 267-275.
    3. Shu Chen & Dongguo Shao & Xudong Li & Caixiu Lei, 2016. "Simulation-Optimization Modeling of Conjunctive Operation of Reservoirs and Ponds for Irrigation of Multiple Crops Using an Improved Artificial Bee Colony Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2887-2905, July.
    4. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    5. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    6. Bastiaanssen, W. G. M. & Ahmad, Mobin-ud-Din & Tahir, Z., 2003. "Upscaling water productivity in irrigated agriculture using remote-sensing and GIS technologies," Book Chapters,, International Water Management Institute.
    7. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    8. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    9. Ghazali, Mahboubeh & Honar, Tooraj & Nikoo, Mohammad Reza, 2018. "A hybrid TOPSIS-agent-based framework for reducing the water demand requested by stakeholders with considering the agents’ characteristics and optimization of cropping pattern," Agricultural Water Management, Elsevier, vol. 199(C), pages 71-85.
    10. Muhammad Afnan Talib & Zhonghua Tang & Asfandyar Shahab & Jamil Siddique & Muhammad Faheem & Mehak Fatima, 2019. "Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan," IJERPH, MDPI, vol. 16(5), pages 1-21, March.
    11. Sanjay Raul & Sudhindra Panda, 2013. "Simulation-Optimization Modeling for Conjunctive Use Management under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1323-1350, March.
    12. Bastiaanssen, W. & Ahmad, Mobin-ud -Din & Tahir, Z., 2003. "Upscaling water productivity in irrigated agriculture using remote-sensing and GIS technologies," IWMI Books, Reports H032648, International Water Management Institute.
    13. Moradi-Jalal, Mahdi & Bozorg Haddad, Omid & Karney, Bryan W. & Marino, Miguel A., 2007. "Reservoir operation in assigning optimal multi-crop irrigation areas," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 149-159, May.
    14. H. Delottier & A. Pryet & A. Dupuy, 2017. "Why Should Practitioners be Concerned about Predictive Uncertainty of Groundwater Management Models?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 61-73, January.
    15. Garg, N. K. & Ali, A., 2000. "Groundwater management for Lower Indus Basin," Agricultural Water Management, Elsevier, vol. 42(3), pages 273-290, January.
    16. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    17. Xinyu Wu & Yuan Lei & Chuntian Cheng & Qilin Ying, 2023. "An Optimal Operation Method for Parallel Hydropower Systems Combining Reservoir Level Control and Power Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1729-1745, March.
    18. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    19. Patanè, C. & Cosentino, S.L., 2010. "Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 97(1), pages 131-138, January.
    20. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:140:y:2014:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.