IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i9d10.1007_s11269-016-1277-y.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Simulation-Optimization Modeling of Conjunctive Operation of Reservoirs and Ponds for Irrigation of Multiple Crops Using an Improved Artificial Bee Colony Algorithm

Author

Listed:
  • Shu Chen

    (Wuhan University)

  • Dongguo Shao

    (Wuhan University)

  • Xudong Li

    (Wuhan University)

  • Caixiu Lei

    (Wuhan University
    Yangtze River Scientific Research Institute)

Abstract

Seasonal drought has become an important factor in agricultural production in humid and semi-humid areas. In this study, to mitigate the impact of seasonal drought, a new integrated mathematical model is proposed for optimal multi-crop irrigation scheduling, which is associated with conjunctive operation of reservoirs and ponds to maximize the annual returns for a reservoir-pond irrigation system. This objective is achieved via the use of two models: an operating policy model, which considers the regulatory role of ponds and optimizes reservoirs and ponds releases in one third of a month, and an allocation model, which optimizes irrigation allocations across crops by addressing water production function. The uneven distribution of ponds is also considered by dividing the irrigation district into many sub-districts. Artificial bee colony algorithm is innovatively improved by incorporating differential evolution algorithm and particle swarm optimization algorithm to solve this nonlinear, high-dimensional and complex optimization problem. The methodology is applied to the Zhanghe Irrigation Distict, which is located in Hubei Province of China, to demonstrate its applicability, and three additional models are simulated to demonstrate the validity of the integrated model. The results indicate that the integrated model can alleviate the impact of the seasonal drought and has remarkable optimization effect, especially for drought years. The average annual return calculated by the integrated model is 7.9, 7.0 and 3.1 % higher than that of the remaining three models, respectively. And in the special dry year, in which the frequency of rainfall is 95 %, the annual return calculated by the integrated model is 24.5, 21.8 and 10.1 % higher than that of the remaining three models, respectively.

Suggested Citation

  • Shu Chen & Dongguo Shao & Xudong Li & Caixiu Lei, 2016. "Simulation-Optimization Modeling of Conjunctive Operation of Reservoirs and Ponds for Irrigation of Multiple Crops Using an Improved Artificial Bee Colony Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2887-2905, July.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:9:d:10.1007_s11269-016-1277-y
    DOI: 10.1007/s11269-016-1277-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1277-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1277-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odhiambo, L. O. & Murty, V. V. N., 1996. "Modeling water balance components in relation to field layout in lowland paddy fields. II: Model application," Agricultural Water Management, Elsevier, vol. 30(2), pages 201-216, April.
    2. Shyam, Radhey & Chauhan, H. S. & Sharma, J. S., 1994. "Optimal operation scheduling model for a canal system," Agricultural Water Management, Elsevier, vol. 26(3), pages 213-225, November.
    3. Weihua Zhang & Chaofu Wei & Jia Zhou, 2010. "Optimal Allocation of Rainfall in the Sichuan Basin, Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4529-4549, December.
    4. Chao-Chung Yang & Liang-Cheng Chang & Chang-Shian Chen & Ming-Sheng Yeh, 2009. "Multi-objective Planning for Conjunctive Use of Surface and Subsurface Water Using Genetic Algorithm and Dynamics Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 417-437, February.
    5. Laxmi Sethi & D. Kumar & Sudhindra Panda & Bimal Mal, 2002. "Optimal Crop Planning and Conjunctive Use of Water Resources in a Coastal River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(2), pages 145-169, April.
    6. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    7. Aliasghar Montazar & H. Riazi & S. Behbahani, 2010. "Conjunctive Water Use Planning in an Irrigation Command Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 577-596, February.
    8. B. Luo & I. Maqsood & G. Huang, 2007. "Planning water resources systems with interval stochastic dynamic programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(6), pages 997-1014, June.
    9. Shangguan, Zhouping & Shao, Mingan & Horton, Robert & Lei, Tingwu & Qin, Lin & Ma, Jianqing, 2002. "A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications," Agricultural Water Management, Elsevier, vol. 52(2), pages 139-154, January.
    10. Rao, N. H. & Sarma, P. B. S. & Chander, Subhash, 1988. "Irrigation scheduling under a limited water supply," Agricultural Water Management, Elsevier, vol. 15(2), pages 165-175, December.
    11. Pramod Pandey & Michelle Soupir & Vijay Singh & Sudhindra Panda & Vinay Pandey, 2011. "Modeling Rainwater Storage in Distributed Reservoir Systems in Humid Subtropical and Tropical Savannah Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3091-3111, October.
    12. Mushtaq, Shahbaz & Dawe, David & Hafeez, Mohsin, 2007. "Economic evaluation of small multi-purpose ponds in the Zhanghe irrigation system, China," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 61-70, July.
    13. Qiongfang Li & John Gowing, 2005. "A Daily Water Balance Modelling Approach for Simulating Performance of Tank-Based Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 211-231, June.
    14. Giuseppe Rossi & Enrica Caporali & Luis Garrote, 2012. "Definition of Risk Indicators for Reservoirs Management Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 981-996, March.
    15. Odhiambo, L. O. & Murty, V. V. N., 1996. "Modeling water balance components in relation to field layout in lowland paddy fields. I. Model development," Agricultural Water Management, Elsevier, vol. 30(2), pages 185-199, April.
    16. Zeng, Xieting & Kang, Shaozhong & Li, Fusheng & Zhang, Lu & Guo, Ping, 2010. "Fuzzy multi-objective linear programming applying to crop area planning," Agricultural Water Management, Elsevier, vol. 98(1), pages 134-142, December.
    17. Huang, Y. & Li, Y.P. & Chen, X. & Ma, Y.G., 2012. "Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China," Agricultural Water Management, Elsevier, vol. 107(C), pages 74-85.
    18. Singh, Ajay & Panda, Sudhindra Nath, 2012. "Development and application of an optimization model for the maximization of net agricultural return," Agricultural Water Management, Elsevier, vol. 115(C), pages 267-275.
    19. Shang, Songhao & Mao, Xiaomin, 2006. "Application of a simulation based optimization model for winter wheat irrigation scheduling in North China," Agricultural Water Management, Elsevier, vol. 85(3), pages 314-322, October.
    20. Paritosh Srivastava & Raj Singh, 2015. "Optimization of Cropping Pattern in a Canal Command Area Using Fuzzy Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4481-4500, September.
    21. Juran Ahmed & Arup Sarma, 2005. "Genetic Algorithm for Optimal Operating Policy of a Multipurpose Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 145-161, April.
    22. Vedula, S. & Mujumdar, P.P. & Chandra Sekhar, G., 2005. "Conjunctive use modeling for multicrop irrigation," Agricultural Water Management, Elsevier, vol. 73(3), pages 193-221, May.
    23. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    24. D.-A. An-Vo & S. Mushtaq & T. Nguyen-Ky & J. Bundschuh & T. Tran-Cong & T. Maraseni & K. Reardon-Smith, 2015. "Nonlinear Optimisation Using Production Functions to Estimate Economic Benefit of Conjunctive Water Use for Multicrop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2153-2170, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Mengting & Linker, Raphael & Wu, Conglin & Xie, Hua & Cui, Yuanlai & Luo, Yufeng & Lv, Xinwei & Zheng, Shizong, 2022. "Multi-objective optimization of rice irrigation modes using ACOP-Rice model and historical meteorological data," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Shangming Jiang & Shaowei Ning & Xiuqing Cao & Juliang Jin & Fan Song & Xianjiang Yuan & Lei Zhang & Xiaoyan Xu & Parmeshwar Udmale, 2019. "Optimal Water Resources Regulation for the Pond Irrigation System Based on Simulation—A Case Study in Jiang-Huai Hilly Regions, China," IJERPH, MDPI, vol. 16(15), pages 1-18, July.
    3. Yue, Qiong & Zhang, Fan & Zhang, Chenglong & Zhu, Hua & Tang, Yikuan & Guo, Ping, 2020. "A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 230(C).
    4. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    5. Li, Xuemin & Zhang, Jingwen & Cai, Ximing & Huo, Zailin & Zhang, Chenglong, 2023. "Simulation-optimization based real-time irrigation scheduling: A human-machine interactive method enhanced by data assimilation," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Chen, Shu & Shao, Dongguo & Gu, Wenquan & Xu, Baoli & Li, Haoxin & Fang, Longzhang, 2017. "An interval multistage water allocation model for crop different growth stages under inputs uncertainty," Agricultural Water Management, Elsevier, vol. 186(C), pages 86-97.
    7. Hamideh Noory & Mona Deyhool & Farhad Mirzaei, 2019. "A Simulation-Optimization Model for Conjunctive Use of Canal and Pond in Irrigating Paddy Fields," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1053-1068, February.
    8. Hu Hu & Kan Yang & Lang Liu & Lyuwen Su & Zhe Yang, 2019. "Short-Term Hydropower Generation Scheduling Using an Improved Cloud Adaptive Quantum-Inspired Binary Social Spider Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2357-2379, May.
    9. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    10. Chen, Shu & Xu, Jijun & Li, Qingqing & Tan, Xuezhi & Nong, Xizhi, 2019. "A copula-based interval-bistochastic programming method for regional water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 217(C), pages 154-164.
    11. Jianxia Chang & Yanbin Kan & Yimin Wang & Qiang Huang & Lei Chen, 2017. "Conjunctive Operation of Reservoirs and Ponds Using a Simulation-Optimization Model of Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 995-1012, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shu & Shao, Dongguo & Gu, Wenquan & Xu, Baoli & Li, Haoxin & Fang, Longzhang, 2017. "An interval multistage water allocation model for crop different growth stages under inputs uncertainty," Agricultural Water Management, Elsevier, vol. 186(C), pages 86-97.
    2. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    3. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    4. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    5. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    6. Zhang, Chenglong & Engel, Bernard A. & Guo, Ping, 2018. "An Interval-based Fuzzy Chance-constrained Irrigation Water Allocation model with double-sided fuzziness," Agricultural Water Management, Elsevier, vol. 210(C), pages 22-31.
    7. Chen, Shu & Xu, Jijun & Li, Qingqing & Tan, Xuezhi & Nong, Xizhi, 2019. "A copula-based interval-bistochastic programming method for regional water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 217(C), pages 154-164.
    8. Dai, Z.Y. & Li, Y.P., 2013. "A multistage irrigation water allocation model for agricultural land-use planning under uncertainty," Agricultural Water Management, Elsevier, vol. 129(C), pages 69-79.
    9. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    10. Yang, Gaiqiang & Guo, Ping & Huo, Lijuan & Ren, Chongfeng, 2015. "Optimization of the irrigation water resources for Shijin irrigation district in north China," Agricultural Water Management, Elsevier, vol. 158(C), pages 82-98.
    11. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    12. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    13. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    14. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    15. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    16. Jianxia Chang & Yanbin Kan & Yimin Wang & Qiang Huang & Lei Chen, 2017. "Conjunctive Operation of Reservoirs and Ponds Using a Simulation-Optimization Model of Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 995-1012, February.
    17. D.-A. An-Vo & S. Mushtaq & T. Nguyen-Ky & J. Bundschuh & T. Tran-Cong & T. Maraseni & K. Reardon-Smith, 2015. "Nonlinear Optimisation Using Production Functions to Estimate Economic Benefit of Conjunctive Water Use for Multicrop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2153-2170, May.
    18. Safavi, Hamid R. & Enteshari, Sajad, 2016. "Conjunctive use of surface and ground water resources using the ant system optimization," Agricultural Water Management, Elsevier, vol. 173(C), pages 23-34.
    19. Wu, Xin & Zheng, Yi & Wu, Bin & Tian, Yong & Han, Feng & Zheng, Chunmiao, 2016. "Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach," Agricultural Water Management, Elsevier, vol. 163(C), pages 380-392.
    20. Ajay Singh, 2016. "Optimal Allocation of Resources for Increasing Farm Revenue under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2569-2580, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:9:d:10.1007_s11269-016-1277-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.