IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i5p886-d212807.html
   My bibliography  Save this article

Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan

Author

Listed:
  • Muhammad Afnan Talib

    (School of Environmental Studies, China University of Geosciences, Wuhan 430074, China)

  • Zhonghua Tang

    (School of Environmental Studies, China University of Geosciences, Wuhan 430074, China)

  • Asfandyar Shahab

    (College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541000, China)

  • Jamil Siddique

    (School of Environmental Studies, China University of Geosciences, Wuhan 430074, China)

  • Muhammad Faheem

    (School of Environmental Studies, China University of Geosciences, Wuhan 430074, China)

  • Mehak Fatima

    (Department of Dermatology, University of Health Sciences, Lahore 54000, Pakistan)

Abstract

Groundwater is the most important water resource, on which depends human geo-economic development and survival. Recent environmental changes and anthropogenic activities render groundwater severely vulnerable. Groundwater in Central Sindh, Pakistan, is facing a similar situation. Hydrogeochemical characteristics of the groundwater in the said region were investigated by analyzing 59 groundwater samples via agricultural and drinking indices, using various statistical methods and graphical approaches to identify factors affecting groundwater. Major reactions occurring in the groundwater system were quantified by hydrogeochemical modeling. A statistical summary reveals the abundance of cations is Na + > Ca 2+ > Mg 2+ > K + , while the abundance of anions is HCO 3 − > Cl − > SO 4 2 . Groundwater chemistry is mainly of rock dominance. Correlation analysis and graphical relationships between ions reveal that ion exchange and rock weathering such as the dissolution of halite, albite, and dissolution of carbonate minerals are important rock–water interactions, governing the evolution of groundwater chemistry. Hydrochemical facies are predominantly of mixed CaMgCl and Na-Cl type, with few samples of Ca-HCO 3 type, which constitutes fresh recharged water. Based on the Water Quality Index (WQI), 28.82% samples were found to be unsuitable for drinking. A United States Salinity Laboratory (USSL) diagram, Wilcox diagram, and other agricultural indices indicate that majority of the groundwater samples fall within the acceptable range for irrigation purposes.

Suggested Citation

  • Muhammad Afnan Talib & Zhonghua Tang & Asfandyar Shahab & Jamil Siddique & Muhammad Faheem & Mehak Fatima, 2019. "Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan," IJERPH, MDPI, vol. 16(5), pages 1-21, March.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:886-:d:212807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/5/886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/5/886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirby, Mac & Ahmad, Mobin-ud-Din & Mainuddin, Mohammed & Khaliq, Tasneem & Cheema, M.J.M., 2017. "Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050," Agricultural Water Management, Elsevier, vol. 179(C), pages 34-46.
    2. Farooqui, Suhail Zaki, 2014. "Prospects of renewables penetration in the energy mix of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 693-700.
    3. Fakir Md. Yunus & Safayet Khan & Priyanka Chowdhury & Abul Hasnat Milton & Sumaira Hussain & Mahfuzar Rahman, 2016. "A Review of Groundwater Arsenic Contamination in Bangladesh: The Millennium Development Goal Era and Beyond," IJERPH, MDPI, vol. 13(2), pages 1-18, February.
    4. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    5. Hussain, Intizar & Marikar, Fuard & Jehangir, Waqar Ahmed, 2000. "Productivity and performance of irrigated wheat farms across canal commands in the Lower Indus Basin," IWMI Research Reports 53024, International Water Management Institute.
    6. Carole Dalin & Yoshihide Wada & Thomas Kastner & Michael J. Puma, 2017. "Groundwater depletion embedded in international food trade," Nature, Nature, vol. 543(7647), pages 700-704, March.
    7. Muhammad Bilal Shakoor & Nabeel Khan Niazi & Irshad Bibi & Mohammad Mahmudur Rahman & Ravi Naidu & Zhaomin Dong & Muhammad Shahid & Muhammad Arshad, 2015. "Unraveling Health Risk and Speciation of Arsenic from Groundwater in Rural Areas of Punjab, Pakistan," IJERPH, MDPI, vol. 12(10), pages 1-20, October.
    8. Qureshi, A.S. & McCornick, P.G. & Qadir, M. & Aslam, Z., 2008. "Managing salinity and waterlogging in the Indus Basin of Pakistan," Agricultural Water Management, Elsevier, vol. 95(1), pages 1-10, January.
    9. Hussain, Intizar & Marikar, Fuard & Jehangir, Waqar Ahmed, 2000. "Productivity and performance of irrigated wheat farms across canal commands in the Lower Indus Basin," IWMI Research Reports 53023, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahir Ali Akbar & Azka Javed & Siddique Ullah & Waheed Ullah & Arshid Pervez & Raza Ali Akbar & Muhammad Faisal Javed & Abdullah Mohamed & Abdeliazim Mustafa Mohamed, 2022. "Principal Component Analysis (PCA)–Geographic Information System (GIS) Modeling for Groundwater and Associated Health Risks in Abbottabad, Pakistan," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    2. Petre Bretcan & Danut Tanislav & Cristiana Radulescu & Gheorghe Serban & Serban Danielescu & Michael Reid & Daniel Dunea, 2022. "Evaluation of Shallow Groundwater Quality at Regional Scales Using Adaptive Water Quality Indices," IJERPH, MDPI, vol. 19(17), pages 1-30, August.
    3. Wen Liu & Long Ma & Yaoming Li & Jilili Abuduwaili & Salamat Abdyzhapar uulu, 2020. "Heavy Metals and Related Human Health Risk Assessment for River Waters in the Issyk−Kul Basin, Kyrgyzstan, Central Asia," IJERPH, MDPI, vol. 17(10), pages 1-13, May.
    4. Kunhua Yang & Guilin Han & Chao Song & Peng Zhang, 2019. "Stable H-O Isotopic Composition and Water Quality Assessment of Surface Water and Groundwater: A Case Study in the Dabie Mountains, Central China," IJERPH, MDPI, vol. 16(21), pages 1-17, October.
    5. Yongxiang Zhang & Ruitao Jia & Jin Wu & Huaqing Wang & Zhuoran Luo, 2021. "Evaluation of Groundwater Using an Integrated Approach of Entropy Weight and Stochastic Simulation: A Case Study in East Region of Beijing," IJERPH, MDPI, vol. 18(14), pages 1-18, July.
    6. Muhammad Yousuf Jat Baloch & Wenjing Zhang & Baig Abdullah Al Shoumik & Anam Nigar & Adil A. M. Elhassan & Ali. E. A. Elshekh & Maaz Osman Bashir & Ahmed Fathi Mohamed Salih Ebrahim & Khalaf alla Adam, 2022. "Hydrogeochemical Mechanism Associated with Land Use Land Cover Indices Using Geospatial, Remote Sensing Techniques, and Health Risks Model," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    7. Zhi Tu & Yinzhu Zhou & Jinlong Zhou & Shuangbao Han & Jinwei Liu & Jiangtao Liu & Ying Sun & Fangyuan Yang, 2023. "Identification and Risk Assessment of Priority Control Organic Pollutants in Groundwater in the Junggar Basin in Xinjiang, P.R. China," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    8. Love Kumar & Ramna Kumari & Avinash Kumar & Imran Aziz Tunio & Claudio Sassanelli, 2023. "Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review," Sustainability, MDPI, vol. 15(7), pages 1-38, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    2. Bastiaanssen, W. G. M. & Ahmad, Mobin-ud-Din & Tahir, Z., 2003. "Upscaling water productivity in irrigated agriculture using remote-sensing and GIS technologies," Book Chapters,, International Water Management Institute.
    3. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    4. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    5. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).
    6. Bastiaanssen, W. & Ahmad, Mobin-ud -Din & Tahir, Z., 2003. "Upscaling water productivity in irrigated agriculture using remote-sensing and GIS technologies," IWMI Books, Reports H032648, International Water Management Institute.
    7. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    8. Ayat Ullah & Nasir Mahmood & Alam Zeb & Harald Kächele, 2020. "Factors Determining Farmers’ Access to and Sources of Credit: Evidence from the Rain-Fed Zone of Pakistan," Agriculture, MDPI, vol. 10(12), pages 1-13, November.
    9. Sohail Abbas & Shazia Kousar & Amber Pervaiz, 2021. "Effects of energy consumption and ecological footprint on CO2 emissions: an empirical evidence from Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13364-13381, September.
    10. Peter Horton, 2017. "We need radical change in how we produce and consume food," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1323-1327, December.
    11. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    12. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    13. Sohyun Park & Darla K Munroe & Ningchuan Xiao, 2023. "Visualizing economic drivers of virtual land trade: A case study of global cereals trade," Environment and Planning B, , vol. 50(6), pages 1695-1698, July.
    14. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    15. Aggarwal, Khushboo & Barua, Rashmi & Vidal-Fernandez, Marian, 2024. "Still Waters Run Deep: Groundwater Contamination and Education Outcomes in India," IZA Discussion Papers 16863, Institute of Labor Economics (IZA).
    16. Muhammad Yousuf Jat Baloch & Wenjing Zhang & Dayi Zhang & Baig Abdullah Al Shoumik & Javed Iqbal & Shuxin Li & Juanfen Chai & Muhammad Ansar Farooq & Anand Parkash, 2022. "Evolution Mechanism of Arsenic Enrichment in Groundwater and Associated Health Risks in Southern Punjab, Pakistan," IJERPH, MDPI, vol. 19(20), pages 1-18, October.
    17. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    18. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    19. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    20. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:886-:d:212807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.