IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v157y2015icp31-38.html
   My bibliography  Save this article

Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater

Author

Listed:
  • Wichelns, Dennis
  • Qadir, Manzoor

Abstract

Salinity and waterlogging have impacted agricultural production in arid areas for more than 2000 years. The causes of the problems are well known, as are the methods and investments required to manage salt-affected soils and shallow water tables. Yet the problems persist in many regions where farmers apply excessive irrigation water, and where farmers and irrigation departments fail to invest in adequate drainage solutions. Long ago, Professor E.W. Hilgard described the inevitability of salinity problems in arid areas and the measures required to prevent or overcome those problems. Hilgard warned of impending salinization in California's Central Valley, based partly on his understanding of salinity and waterlogging problems in India. More recently, Jan van Schilfgaarde, Jim Oster, and others also have described the inevitable environmental impacts of irrigation. These authors suggest that irrigation likely can be sustained, but the cost of reducing the environmental impacts to an acceptable level might be substantial in some areas. We review the perspectives of these authors, and others, with an outlook toward a future in which the goal of achieving sustainable irrigation coincides with the goal of intensifying agriculture more generally, to provide food and fiber for an expanding global population. We propose five activities that might be implemented in a comprehensive program to achieve successful management of salinity and waterlogging. We also introduce the notion of implementing a deposit or bond payment for the salt contained in irrigation water deliveries. Farmers would be reimbursed in accordance with their salt management and disposal practices.

Suggested Citation

  • Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
  • Handle: RePEc:eee:agiwat:v:157:y:2015:i:c:p:31-38
    DOI: 10.1016/j.agwat.2014.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414002558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Letey, J. & Feng, G.L., 2007. "Dynamic versus steady-state approaches to evaluate irrigation management of saline waters," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 1-10, July.
    2. Houk, Eric & Frasier, Marshall & Schuck, Eric, 2006. "The agricultural impacts of irrigation induced waterlogging and soil salinity in the Arkansas Basin," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 175-183, September.
    3. Gerard, David, 2000. "The law and economics of reclamation bonds," Resources Policy, Elsevier, vol. 26(4), pages 189-197, December.
    4. Lee, Lisa Y. & Ancev, Tihomir & Vervoort, Willem, 2012. "Evaluation of environmental policies targeting irrigated agriculture: The case of the Mooki catchment, Australia," Agricultural Water Management, Elsevier, vol. 109(C), pages 107-116.
    5. Wichelns, D. & Oster, J. D., 1990. "Potential economic returns to improved irrigation infiltration uniformity," Agricultural Water Management, Elsevier, vol. 18(3), pages 253-266, September.
    6. Ambast, S.K. & Tyagi, N.K. & Raul, S.K., 2006. "Management of declining groundwater in the Trans Indo-Gangetic Plain (India): Some options," Agricultural Water Management, Elsevier, vol. 82(3), pages 279-296, April.
    7. Corwin, Dennis L. & Rhoades, James D. & Simunek, Jirka, 2007. "Leaching requirement for soil salinity control: Steady-state versus transient models," Agricultural Water Management, Elsevier, vol. 90(3), pages 165-180, June.
    8. van Schilfgaarde, Jan, 1994. "Irrigation -- a blessing or a curse," Agricultural Water Management, Elsevier, vol. 25(3), pages 203-219, July.
    9. Andersen, Matthew A. & Coupal, Roger H. & White, Bridgette, 2009. "Reclamation Costs and Regulation of Oil and Gas Development with Application to Wyoming," Western Economics Forum, Western Agricultural Economics Association, vol. 8(1), pages 1-9.
    10. Singh, Ajay & Krause, Peter & Panda, Sudhindra N. & Flugel, Wolfgang-Albert, 2010. "Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India," Agricultural Water Management, Elsevier, vol. 97(10), pages 1443-1451, October.
    11. Carr, Gemma & Potter, Robert B. & Nortcliff, Stephen, 2011. "Water reuse for irrigation in Jordan: Perceptions of water quality among farmers," Agricultural Water Management, Elsevier, vol. 98(5), pages 847-854, March.
    12. Iraj Emadodin & Daiju Narita & Hans Bork, 2012. "Soil degradation and agricultural sustainability: an overview from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(5), pages 611-625, October.
    13. Ritzema, H.P. & Satyanarayana, T.V. & Raman, S. & Boonstra, J., 2008. "Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers' fields," Agricultural Water Management, Elsevier, vol. 95(3), pages 179-189, March.
    14. Rhoades, J. D., 1989. "Intercepting, isolating and reusing drainage waters for irrigation to conserve water and protect water quality," Agricultural Water Management, Elsevier, vol. 16(1-2), pages 37-52, August.
    15. Letey, J. & Hoffman, G.J. & Hopmans, J.W. & Grattan, S.R. & Suarez, D. & Corwin, D.L. & Oster, J.D. & Wu, L. & Amrhein, C., 2011. "Evaluation of soil salinity leaching requirement guidelines," Agricultural Water Management, Elsevier, vol. 98(4), pages 502-506, February.
    16. Khan, Shahbaz & Rana, Tariq & Hanjra, Munir A. & Zirilli, John, 2009. "Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue?," Agricultural Water Management, Elsevier, vol. 96(3), pages 493-503, March.
    17. Oster, J. D., 1994. "Irrigation with poor quality water," Agricultural Water Management, Elsevier, vol. 25(3), pages 271-297, July.
    18. Ibrakhimov, Mirzakhayot & Martius, Christopher & Lamers, J.P.A. & Tischbein, Bernhard, 2011. "The dynamics of groundwater table and salinity over 17 years in Khorezm," Agricultural Water Management, Elsevier, vol. 101(1), pages 52-61.
    19. Koen Beumer & Sujit Bhattacharya, 2013. "Emerging technologies in India: Developments, debates and silences about nanotechnology," Science and Public Policy, Oxford University Press, vol. 40(5), pages 628-643, May.
    20. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    21. Geoffrey Barrows & Steven Sexton & David Zilberman, 2014. "Agricultural Biotechnology: The Promise and Prospects of Genetically Modified Crops," Journal of Economic Perspectives, American Economic Association, vol. 28(1), pages 99-120, Winter.
    22. Rhoades, J. D. & Bingham, F. T. & Letey, J. & Hoffman, G. J. & Dedrick, A. R. & Pinter, P. J. & Replogle, J. A., 1989. "Use of saline drainage water for irrigation: Imperial Valley study," Agricultural Water Management, Elsevier, vol. 16(1-2), pages 25-36, August.
    23. Thayalakumaran, T. & Bethune, M.G. & McMahon, T.A., 2007. "Achieving a salt balance--Should it be a management objective?," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 1-12, August.
    24. Datta, K. K. & Jong, C. de, 2002. "Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India," Agricultural Water Management, Elsevier, vol. 57(3), pages 223-238, December.
    25. Kurt A. Schwabe & Iddo Kan & Keith C. Knapp, 2006. "Drainwater Management for Salinity Mitigation in Irrigated Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 133-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    2. Manzoor Qadir, 2016. "Policy Note: Reversing Salt-Induced Land Degradation Requires Integrated Measures," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-8, March.
    3. Turner, Benjamin L. & Kodali, Srinadh, 2020. "Soil system dynamics for learning about complex, feedback-driven agricultural resource problems: model development, evaluation, and sensitivity analysis of biophysical feedbacks," Ecological Modelling, Elsevier, vol. 428(C).
    4. Tavakoli Kivi, Saman & Bailey, Ryan T., 2017. "Modeling sulfur cycling and sulfate reactive transport in an agricultural groundwater system," Agricultural Water Management, Elsevier, vol. 185(C), pages 78-92.
    5. Barnard, Johannes Hendrikus & Matthews, Nicolette & du Preez, Christiaan Cornelius, 2021. "Formulating and assessing best water and salt management practices: Lessons from non-saline and water-logged irrigated fields," Agricultural Water Management, Elsevier, vol. 247(C).
    6. Yahyaoui, Imene & Tadeo, Fernando & Segatto, Marcello Vieira, 2017. "Energy and water management for drip-irrigation of tomatoes in a semi- arid district," Agricultural Water Management, Elsevier, vol. 183(C), pages 4-15.
    7. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    8. Matthew Scott Jansing & Faezeh Mahichi & Ranahansa Dasanayake, 2020. "Sustainable Irrigation Management in Paddy Rice Agriculture: A Comparative Case Study of Karangasem Indonesia and Kunisaki Japan," Sustainability, MDPI, Open Access Journal, vol. 12(3), pages 1-16, February.
    9. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Darzi-Naftchali, Abdullah & Ritzema, Henk & Karandish, Fatemeh & Mokhtassi-Bidgoli, Ali & Ghasemi-Nasr, Mohammad, 2017. "Alternate wetting and drying for different subsurface drainage systems to improve paddy yield and water productivity in Iran," Agricultural Water Management, Elsevier, vol. 193(C), pages 221-231.
    11. Mohammad Valipour & Jens Krasilnikof & Stavros Yannopoulos & Rohitashw Kumar & Jun Deng & Paolo Roccaro & Larry Mays & Mark E. Grismer & Andreas N. Angelakis, 2020. "The Evolution of Agricultural Drainage from the Earliest Times to the Present," Sustainability, MDPI, Open Access Journal, vol. 12(1), pages 1-30, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gill, Bruce C. & Terry, Alister D., 2016. "‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia," Agricultural Water Management, Elsevier, vol. 164(P2), pages 291-303.
    2. Skaggs, T.H. & Suarez, D.L. & Goldberg, S. & Shouse, P.J., 2012. "Replicated lysimeter measurements of tracer transport in clayey soils: Effects of irrigation water salinity," Agricultural Water Management, Elsevier, vol. 110(C), pages 84-93.
    3. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    4. Peragón, Juan M. & Pérez-Latorre, Francisco J. & Delgado, Antonio & Tóth, Tibor, 2018. "Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards," Agricultural Water Management, Elsevier, vol. 202(C), pages 33-41.
    5. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    6. Juliane Haensch & Sarah Ann Wheeler & Alec Zuo & Henning Bjornlund, 2016. "The Impact of Water and Soil Salinity on Water Market Trading in the Southern Murray–Darling Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-26, March.
    7. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    8. Erenstein, Olaf, 2009. "Comparing water management in rice-wheat production systems in Haryana, India and Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 96(12), pages 1799-1806, December.
    9. Shahrokhnia, Hossein & Wu, Laosheng, 2021. "SALEACH: A new web-based soil salinity leaching model for improved irrigation management," Agricultural Water Management, Elsevier, vol. 252(C).
    10. Bassil, Elias S. & Kaffka, Stephen R., 2002. "Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: I. Consumptive water use," Agricultural Water Management, Elsevier, vol. 54(1), pages 67-80, March.
    11. Khan, Shahbaz & Rana, Tariq & Hanjra, Munir A. & Zirilli, John, 2009. "Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue?," Agricultural Water Management, Elsevier, vol. 96(3), pages 493-503, March.
    12. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Tripler, Effi & Shani, Uri & Ben-Gal, Alon & Mualem, Yechezkel, 2012. "Apparent steady state conditions in high resolution weighing-drainage lysimeters containing date palms grown under different salinities," Agricultural Water Management, Elsevier, vol. 107(C), pages 66-73.
    14. Singh, R.B. & Chauhan, C.P.S. & Minhas, P.S., 2009. "Water production functions of wheat (Triticum aestivum L.) irrigated with saline and alkali waters using double-line source sprinkler system," Agricultural Water Management, Elsevier, vol. 96(5), pages 736-744, May.
    15. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    16. Chen, Ming & Kang, Yaohu & Wan, Shuqin & Liu, Shi-ping, 2009. "Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)," Agricultural Water Management, Elsevier, vol. 96(12), pages 1766-1772, December.
    17. Qadir, M. & Boers, Th. M. & Schubert, S. & Ghafoor, A. & Murtaza, G., 2003. "Agricultural water management in water-starved countries: challenges and opportunities," Agricultural Water Management, Elsevier, vol. 62(3), pages 165-185, October.
    18. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.
    19. Chen, Weiping & Hou, Zhenan & Wu, Laosheng & Liang, Yongchao & Wei, Changzhou, 2010. "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China," Agricultural Water Management, Elsevier, vol. 97(12), pages 2001-2008, November.
    20. Abdullah Darzi-Naftchali & Henk Ritzema, 2018. "Integrating Irrigation and Drainage Management to Sustain Agriculture in Northern Iran," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:157:y:2015:i:c:p:31-38. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.