IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377420307034.html
   My bibliography  Save this article

Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin

Author

Listed:
  • Aein, Reza
  • Alizadeh, Hosein

Abstract

Helleh River, a southern vital agricultural ecosystem in Iran, has been suffering from both water shortage and quality degradation in recent decades. To deal with the problems, different stakeholders have been suggesting the central government some compartment development plans including construction of dams and irrigation districts, installation of modern irrigation technologies, and modification of crop patterns and irrigation–leaching strategies. Accordingly, this paper proposes a generic novel hydro-economic methodology for basin-scale optimal planning of an integrated development scheme for Helleh River Basin. Mentioned measures in different spatial scales from farm-level to basin-level as well as distinct time horizons of short-term and long-term are holistically evaluated and optimized based on technical, hydrologic, agronomic, and economic aspects. In this regard, a water allocation simulation model, i.e. WEAP software, improved here by some extra modules for salt routing and economic evaluation in Python Programming Environment is coupled with an optimization algorithm, i.e. Particle Swarm Optimization, which results in a new holistic hydro-economic simulation–optimization tool. Results demonstrate the economic efficiency of constructing three new dams, improvement and development of 19930 ha (ha) of irrigation area, irrigation technology, and strategy change, and crop pattern modification. Furthermore, results show that optimizing irrigation–leaching schedule leads to significant improvement of the economic value of water compared to the status quo, while construction and operation of structural projects result in a dramatic decrease in the economic value of water due to increase in both costs and leaching-related water usage. We discuss how irrigation technology improvement in salinity-affected basin may lead to a decrease in the economic value of water. Moreover, we advocate for the application of deficit irrigation strategy while respecting salt leaching requirements and cultivation of lower water-consuming crops. Results demonstrate how reservoirs’ operation takes a minor role in the regulation of rivers’ salinity, while we anticipate a significant increase in salt concentration of crops’ root zones due to more efficient water use.

Suggested Citation

  • Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420307034
    DOI: 10.1016/j.agwat.2020.106505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420307034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    2. Finlayson, John & Bathgate, Andrew & Nordblom, Tom & Theiveyanathan, Tivi & Farquharson, Bob & Crosbie, Russell & Mitchell, David & Hoque, Ziaul, 2010. "Balancing land use to manage river volume and salinity: Economic and hydrological consequences for the Little River catchment in Central West, New South Wales, Australia," Agricultural Systems, Elsevier, vol. 103(3), pages 161-170, March.
    3. Houk, Eric & Frasier, Marshall & Schuck, Eric, 2006. "The agricultural impacts of irrigation induced waterlogging and soil salinity in the Arkansas Basin," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 175-183, September.
    4. Jose M. Yorobe Jr. & Jauhar Ali & Valerien O. Pede & Roderick M. Rejesus & Orlee. P. Velarde & Huaiyu Wang, 2016. "Yield and income effects of rice varieties with tolerance of multiple abiotic stresses: the case of green super rice (GSR) and flooding in the Philippines," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 261-271, May.
    5. Khan, Shahbaz & Rana, Tariq & Hanjra, Munir A., 2008. "A cross disciplinary framework for linking farms with regional groundwater and salinity management targets," Agricultural Water Management, Elsevier, vol. 95(1), pages 35-47, January.
    6. Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.
    7. Lee, Lisa Y. & Ancev, Tihomir & Vervoort, Willem, 2012. "Evaluation of environmental policies targeting irrigated agriculture: The case of the Mooki catchment, Australia," Agricultural Water Management, Elsevier, vol. 109(C), pages 107-116.
    8. Datta, K. K. & de Jong, C. & Singh, O. P., 2000. "Reclaiming salt-affected land through drainage in Haryana, India: a financial analysis," Agricultural Water Management, Elsevier, vol. 46(1), pages 55-71, November.
    9. Majid Rezaei & Hosein Alizadeh & Majid Ehtiat, 2019. "Process-based Analysis of the Climate Change Impacts on Primary Hydro-Salinity of the River Ecosystems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4287-4302, September.
    10. Minhas, P.S. & Qadir, Manzoor & Yadav, R.K., 2019. "Groundwater irrigation induced soil sodification and response options," Agricultural Water Management, Elsevier, vol. 215(C), pages 74-85.
    11. Poole, M. L. & Turner, Neil C. & Young, J. M., 2002. "Sustainable cropping systems for high rainfall areas of southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 201-211, February.
    12. Rosegrant, M. W. & Ringler, C. & McKinney, D. C. & Cai, X. & Keller, A. & Donoso, G., 2000. "Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin," Agricultural Economics, Blackwell, vol. 24(1), pages 33-46, December.
    13. Marshall, Graham R. & Jones, Randall E., 1997. "Significance of supply response for estimating agricultural costs of soil salinity," Agricultural Systems, Elsevier, vol. 53(2-3), pages 231-252.
    14. Levers, L.R. & Skaggs, T.H. & Schwabe, K.A., 2019. "Buying water for the environment: A hydro-economic analysis of Salton Sea inflows," Agricultural Water Management, Elsevier, vol. 213(C), pages 554-567.
    15. Khan, Shahbaz & Rana, Tariq & Hanjra, Munir A. & Zirilli, John, 2009. "Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue?," Agricultural Water Management, Elsevier, vol. 96(3), pages 493-503, March.
    16. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    17. Dinar, Ariel & Letey, J. & Knapp, Keith C., 1985. "Economic evaluation of salinity, drainage and non-uniformity of infiltrated irrigation water," Agricultural Water Management, Elsevier, vol. 10(3), pages 221-233, November.
    18. J. Kirby & Md. Mainuddin & M. Ahmad & L. Gao, 2013. "Simplified Monthly Hydrology and Irrigation Water Use Model to Explore Sustainable Water Management Options in the Murray-Darling Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4083-4097, September.
    19. Gill, Bruce C. & Terry, Alister D., 2016. "‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia," Agricultural Water Management, Elsevier, vol. 164(P2), pages 291-303.
    20. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    21. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    22. Bathgate, Andrew & Pannell, David J., 2002. "Economics of deep-rooted perennials in western Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 117-132, February.
    23. Shalhevet, Joseph, 1994. "Using water of marginal quality for crop production: major issues," Agricultural Water Management, Elsevier, vol. 25(3), pages 233-269, July.
    24. Dinar, Ariel & Knapp, Keith C., 1988. "Economic Analysis Of On-Farm Solutions To Drainage Problems In Irrigated Agriculture," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 32(1), pages 1-14, April.
    25. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben, 2018. "Reusing oil and gas produced water for irrigation of food crops in drylands," Agricultural Water Management, Elsevier, vol. 206(C), pages 124-134.
    26. Ado, Maman Nassirou & Guero, Yadji & Michot, Didier & Soubeiga, Boubacar & Senga Kiesse, Tristan & Walter, Christian, 2016. "Phytodesalinization of irrigated saline Vertisols in the Niger Valley by Echinochloa stagnina," Agricultural Water Management, Elsevier, vol. 177(C), pages 229-240.
    27. Zekri, Slim & Madani, Kaveh & Bazargan-Lari, Mohammad Reza & Kotagama, Hemesiri & Kalbus, Edda, 2017. "Feasibility of adopting smart water meters in aquifer management: An integrated hydro-economic analysis," Agricultural Water Management, Elsevier, vol. 181(C), pages 85-93.
    28. Karandish, Fatemeh & Šimůnek, Jiří, 2018. "An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS," Agricultural Water Management, Elsevier, vol. 208(C), pages 67-82.
    29. Pannell, David J. & Ewing, Michael A., 2006. "Managing secondary dryland salinity: Options and challenges," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 41-56, February.
    30. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    31. Feinerman, E. & Yaron, D., 1983. "Economics of Irrigation Water Mixing Within A Farm Framework," Working Papers 232610, Hebrew University of Jerusalem, Center for Agricultural Economic Research.
    32. Welle, Paul D. & Medellín-Azuara, Josué & Viers, Joshua H. & Mauter, Meagan S., 2017. "Economic and policy drivers of agricultural water desalination in California’s central valley," Agricultural Water Management, Elsevier, vol. 194(C), pages 192-203.
    33. O'Connell, Michael & Young, John & Kingwell, Ross, 2006. "The economic value of saltland pastures in a mixed farming system in Western Australia," Agricultural Systems, Elsevier, vol. 89(2-3), pages 371-389, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elham Soleimanian & Abbas Afshar & Amir Molajou & Mahdi Ghasemi, 2023. "Development of a Comprehensive Water Simulation Model for Water, Food, and Energy Nexus Analysis in Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4589-4621, September.
    2. Ajay Singh, 2022. "Better Water and Land Allocation for Long-term Agricultural Sustainability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3505-3522, August.
    3. Naveed Ahmed & Haishen Lü & Shakeel Ahmed & Ghulam Nabi & Muhammad Abdul Wajid & Aamir Shakoor & Hafiz Umar Farid, 2021. "Irrigation Supply and Demand, Land Use/Cover Change and Future Projections of Climate, in Indus Basin Irrigation System, Pakistan," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juliane Haensch & Sarah Ann Wheeler & Alec Zuo & Henning Bjornlund, 2016. "The Impact of Water and Soil Salinity on Water Market Trading in the Southern Murray–Darling Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-26, March.
    2. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    3. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    4. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    5. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    6. Dinar, Ariel & Knapp, Keith C., 1988. "Economic Analysis Of On-Farm Solutions To Drainage Problems In Irrigated Agriculture," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 32(1), pages 1-14, April.
    7. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    8. Finlayson, John & Real, Daniel & Nordblom, Tom & Revell, Clinton & Ewing, Mike & Kingwell, Ross, 2012. "Farm level assessments of a novel drought tolerant forage: Tedera (Bituminaria bituminosa C.H. Stirt var. albomarginata)," Agricultural Systems, Elsevier, vol. 112(C), pages 38-47.
    9. Bathgate, A. & Revell, C. & Kingwell, R., 2009. "Identifying the value of pasture improvement using wholefarm modelling," Agricultural Systems, Elsevier, vol. 102(1-3), pages 48-57, October.
    10. Crossman, Neville D. & Bryan, Brett A., 2009. "Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality," Ecological Economics, Elsevier, vol. 68(3), pages 654-668, January.
    11. Kingwell, Ross S., 2011. "Managing complexity in modern farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-23.
    12. Characklis, Gregory W. & Griffin, Ronald C. & Bedient, Philip B., 2005. "Measuring the Long-Term Regional Benefits of Salinity Reduction," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 30(1), pages 1-25, April.
    13. M. Qadir & E. Quillérou & V. Nangia & G. Murtaza & M. Singh & R.J. Thomas & P. Drechsel & A.D. Noble, 2014. "Economics of salt‐induced land degradation and restoration," Natural Resources Forum, Blackwell Publishing, vol. 38(4), pages 282-295, November.
    14. David J. Pannell & Anna M. Roberts, 2010. "Australia's National Action Plan for Salinity and Water Quality: a retrospective assessment ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 437-456, October.
    15. Bell, Lindsay W. & Byrne (nee Flugge), Felicity & Ewing, Mike A. & Wade, Len J., 2008. "A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system," Agricultural Systems, Elsevier, vol. 96(1-3), pages 166-174, March.
    16. Ines Toumi & Mohamed Ghrab & Olfa Zarrouk & Kamel Nagaz, 2024. "Impact of Deficit Irrigation Strategies Using Saline Water on Soil and Peach Tree Yield in an Arid Region of Tunisia," Agriculture, MDPI, vol. 14(3), pages 1-14, February.
    17. Sadeh, A. & Ravina, I., 2000. "Relationships between yield and irrigation with low-quality water -- a system approach," Agricultural Systems, Elsevier, vol. 64(2), pages 99-113, May.
    18. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    19. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).
    20. M. Qadir & E. Quillérou & V. Nangia & G. Murtaza & M. Singh & R.J. Thomas & P. Drechsel & A.D. Noble, 2014. "Economics of salt‐induced land degradation and restoration," Natural Resources Forum, Blackwell Publishing, vol. 0(4), pages 282-295, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420307034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.