IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v64y2000i2p99-113.html
   My bibliography  Save this article

Relationships between yield and irrigation with low-quality water -- a system approach

Author

Listed:
  • Sadeh, A.
  • Ravina, I.

Abstract

No abstract is available for this item.

Suggested Citation

  • Sadeh, A. & Ravina, I., 2000. "Relationships between yield and irrigation with low-quality water -- a system approach," Agricultural Systems, Elsevier, vol. 64(2), pages 99-113, May.
  • Handle: RePEc:eee:agisys:v:64:y:2000:i:2:p:99-113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(00)00016-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Knapp, Keith C. & Dinar, Ariel, 1986. "A Dynamic Analysis Of Optimal Water Use Under Saline Conditions," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 11(01), pages 1-9, July.
    2. Shalhevet, Joseph, 1994. "Using water of marginal quality for crop production: major issues," Agricultural Water Management, Elsevier, vol. 25(3), pages 233-269, July.
    3. Feinerman, E. & Yaron, D., 1983. "Economics of Irrigation Water Mixing Within A Farm Framework," Working Papers 232610, Hebrew University of Jerusalem, Center for Agricultural Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    2. Zhang, Junpeng & Wang, He & Feng, Di & Cao, Caiyun & Zheng, Chunlian & Dang, Hongkai & Li, Kejiang & Gao, Yang & Sun, Chitao, 2024. "Evaluating the impacts of long-term saline water irrigation on soil salinity and cotton yield under plastic film mulching: A 15-year field study," Agricultural Water Management, Elsevier, vol. 293(C).
    3. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    4. van Straten, G. & de Vos, A.C. & Rozema, J. & Bruning, B. & van Bodegom, P.M., 2019. "An improved methodology to evaluate crop salt tolerance from field trials," Agricultural Water Management, Elsevier, vol. 213(C), pages 375-387.
    5. Yu, Qihua & Wang, Feng & Zou, Minzhong & Ji, Shasha & Li, Mingfa & Kang, Shaozhong, 2024. "Quantifying the spatial water salinity threshold of saline water irrigation by applying distributed WAVES model," Agricultural Systems, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Characklis, Gregory W. & Griffin, Ronald C. & Bedient, Philip B., 2005. "Measuring the Long-Term Regional Benefits of Salinity Reduction," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 30(01), pages 1-25, April.
    2. Schwabe, Kurt A. & Knapp, Keith C. & Kan, Iddo, 2002. "Integrated Drainwater Management In Irrigated Agriculture," 2002 Annual meeting, July 28-31, Long Beach, CA 19609, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Hamilton, Andrew J. & Boland, Anne-Maree & Stevens, Daryl & Kelly, Jim & Radcliffe, John & Ziehrl, Angelika & Dillon, Peter & Paulin, Bob, 2005. "Position of the Australian horticultural industry with respect to the use of reclaimed water," Agricultural Water Management, Elsevier, vol. 71(3), pages 181-209, February.
    5. María del Pino Palacios-Diaz & Juan Ramón Fernández-Vera & Jose Manuel Hernández-Moreno & Regla Amorós & Vanessa Mendoza-Grimón, 2023. "Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde," Agriculture, MDPI, vol. 13(1), pages 1-18, January.
    6. Yaron, Dan & Ratner, Aharon, 1986. "Regional Cooperation in the Use of Irrigation Water, Efficiency and Game Theory Analysis of Income Distribution," Working Papers 232657, Hebrew University of Jerusalem, Center for Agricultural Economic Research.
    7. Mojid, M.A. & Murad, K.F.I. & Tabriz, S.S. & Wyseure, G.C.L., 2013. "An advantageous level of irrigation water salinity for wheat cultivation," Journal of the Bangladesh Agricultural University, Bangladesh Agricultural University Research System (BAURES), vol. 11.
    8. Dinar, Ariel & Knapp, Keith C., 1988. "Economic Analysis Of On-Farm Solutions To Drainage Problems In Irrigated Agriculture," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 32(01), pages 1-14, April.
    9. Marcos, Mathias & Sharifi, Hussain & Grattan, Stephen R. & Linquist, Bruce A., 2018. "Spatio-temporal salinity dynamics and yield response of rice in water-seeded rice fields," Agricultural Water Management, Elsevier, vol. 195(C), pages 37-46.
    10. Oster, J. D., 1997. "Soil salinity and water quality : by R. Chhabra, A.A. Balkerna Publishers, Brookfield, VT, USA, 1966, 284 pp., ISBN 90-5410-727-8," Agricultural Water Management, Elsevier, vol. 33(2-3), pages 215-217, June.
    11. Axelrad, Gilad & Feinerman, Eli, 2007. "Regional Planning Of Wastewater Reuse For Irrigation And River Rehabilitation," Discussion Papers 7141, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    12. Ghimire, Monika & Bhavsar, Hiren & Choi, Jong San & Vitale, Jeffrey D. & Stoecker, Arthur L., 2012. "Integration Of Gis And Hydrological Models In A Feasibility Study Of Irrigation Under Salinity," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124714, Agricultural and Applied Economics Association.
    13. Xu, Hailiang & Ye, Mao & Li, Jimei, 2008. "The water transfer effects on agricultural development in the lower Tarim River, Xinjiang of China," Agricultural Water Management, Elsevier, vol. 95(1), pages 59-68, January.
    14. Ghrab, Mohamed & Gargouri, Kamel & Bentaher, Hatem & Chartzoulakis, Kostas & Ayadi, Mohamed & Ben Mimoun, Mehdi & Masmoudi, Mohamed Moncef & Ben Mechlia, Netij & Psarras, Georgios, 2013. "Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate," Agricultural Water Management, Elsevier, vol. 123(C), pages 1-11.
    15. Mehari, Abraham & Schultz, Bart & Depeweg, Herman, 2006. "Salinity impact assessment on crop yield for Wadi Laba spate irrigation system in Eritrea," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 27-37, September.
    16. Kan, Iddo & Schwabe, Kurt A. & Knapp, Keith C., 2002. "Microeconomics Of Irrigation With Saline Water," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(01), pages 1-24, July.
    17. Ben-Asher, Jiftah & Tsuyuki, Itaru & Bravdo, Ben-Ami & Sagih, Moshe, 2006. "Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 13-21, May.
    18. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M. & Karam, F., 1998. "Salinity and drought, a comparison of their effects on the relationship between yield and evapotranspiration," Agricultural Water Management, Elsevier, vol. 36(1), pages 45-54, February.
    19. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    20. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:64:y:2000:i:2:p:99-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.