IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v214y2024ics0308521x23002445.html
   My bibliography  Save this article

Quantifying the spatial water salinity threshold of saline water irrigation by applying distributed WAVES model

Author

Listed:
  • Yu, Qihua
  • Wang, Feng
  • Zou, Minzhong
  • Ji, Shasha
  • Li, Mingfa
  • Kang, Shaozhong

Abstract

Saline water irrigation presents a viable solution to alleviate freshwater scarcity. However, it's crucial to consider the threshold of salinity, as excessive levels can adversely affect crop yield, crop productivity and soil sustainability. Additionally, due to varying surface conditions and management practices at the regional level, a distributed approach to saline water irrigation management is necessary.

Suggested Citation

  • Yu, Qihua & Wang, Feng & Zou, Minzhong & Ji, Shasha & Li, Mingfa & Kang, Shaozhong, 2024. "Quantifying the spatial water salinity threshold of saline water irrigation by applying distributed WAVES model," Agricultural Systems, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:agisys:v:214:y:2024:i:c:s0308521x23002445
    DOI: 10.1016/j.agsy.2023.103839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X23002445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2023.103839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Qihua & Kang, Shaozhong & Hu, Shunjun & Zhang, Lu & Zhang, Xiaotao, 2021. "Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES: Searching for a target irrigation volume for saline water irrigation," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Zhang, Junpeng & Li, Kejiang & Gao, Yang & Feng, Di & Zheng, Chunlian & Cao, Caiyun & Sun, Jingsheng & Dang, Hongkai & Hamani, Abdoul Kader Mounkaila, 2022. "Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Yu, Qihua & Kang, Shaozhong & Zhang, Lu & Hu, Shunjun & Li, Yunfeng & Parsons, David, 2023. "Incorporating new functions into the WAVES model, to better simulate cotton production under film mulching and severe salinity," Agricultural Water Management, Elsevier, vol. 288(C).
    4. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Su, Ninghu & Bethune, Matthew & Mann, Louise & Heuperman, Alfred, 2005. "Simulating water and salt movement in tile-drained fields irrigated with saline water under a Serial Biological Concentration management scenario," Agricultural Water Management, Elsevier, vol. 78(3), pages 165-180, December.
    6. Bajwa, M. S. & Choudhary, O. P. & Josan, A. S., 1992. "Effect of continuous irrigation with sodic and saline-sodic waters on soil properties and crop yields under cotton-wheat rotation in northwestern India," Agricultural Water Management, Elsevier, vol. 22(4), pages 345-356, December.
    7. Singh, Rajinder, 2004. "Simulations on direct and cyclic use of saline waters for sustaining cotton-wheat in a semi-arid area of north-west India," Agricultural Water Management, Elsevier, vol. 66(2), pages 153-162, April.
    8. Chen, Weiping & Hou, Zhenan & Wu, Laosheng & Liang, Yongchao & Wei, Changzhou, 2010. "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China," Agricultural Water Management, Elsevier, vol. 97(12), pages 2001-2008, November.
    9. Li, Runwei & Wei, Chenyang & Afroz, Mahnaz Dil & Lyu, Jun & Chen, Gang, 2021. "A GIS-based framework for local agricultural decision-making and regional crop yield simulation," Agricultural Systems, Elsevier, vol. 193(C).
    10. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).
    11. Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.
    12. Moreno, F. & Cabrera, F. & Fernandez-Boy, E. & Giron, I. F. & Fernandez, J. E. & Bellido, B., 2001. "Irrigation with saline water in the reclaimed marsh soils of south-west Spain: impact on soil properties and cotton and sugar beet crops," Agricultural Water Management, Elsevier, vol. 48(2), pages 133-150, June.
    13. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    14. Verma, A.K. & Gupta, S.K. & Isaac, R.K., 2012. "Use of saline water for irrigation in monsoon climate and deep water table regions: Simulation modeling with SWAP," Agricultural Water Management, Elsevier, vol. 115(C), pages 186-193.
    15. Ren, Futian & Yang, Guang & Li, Wanjing & He, Xinlin & Gao, Yongli & Tian, Lijun & Li, Fadong & Wang, Zelin & Liu, Saihua, 2021. "Yield-compatible salinity level for growing cotton (Gossypium hirsutum L.) under mulched drip irrigation using saline water," Agricultural Water Management, Elsevier, vol. 250(C).
    16. Zhang, He & Li, Duansheng & Zhou, Zhiguo & Zahoor, Rizwan & Chen, Binglin & Meng, Yali, 2017. "Soil water and salt affect cotton (Gossypium hirsutum L.) photosynthesis, yield and fiber quality in coastal saline soil," Agricultural Water Management, Elsevier, vol. 187(C), pages 112-121.
    17. Han, Ming & Zhao, Chengyi & Šimůnek, Jirka & Feng, Gary, 2015. "Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-1D coupled with a crop growth model," Agricultural Water Management, Elsevier, vol. 160(C), pages 64-75.
    18. Sadeh, A. & Ravina, I., 2000. "Relationships between yield and irrigation with low-quality water -- a system approach," Agricultural Systems, Elsevier, vol. 64(2), pages 99-113, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Qihua & Kang, Shaozhong & Hu, Shunjun & Zhang, Lu & Zhang, Xiaotao, 2021. "Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES: Searching for a target irrigation volume for saline water irrigation," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Zhang, Junpeng & Wang, He & Feng, Di & Cao, Caiyun & Zheng, Chunlian & Dang, Hongkai & Li, Kejiang & Gao, Yang & Sun, Chitao, 2024. "Evaluating the impacts of long-term saline water irrigation on soil salinity and cotton yield under plastic film mulching: A 15-year field study," Agricultural Water Management, Elsevier, vol. 293(C).
    3. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    4. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    5. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    6. Yu, Qihua & Kang, Shaozhong & Zhang, Lu & Hu, Shunjun & Li, Yunfeng & Parsons, David, 2023. "Incorporating new functions into the WAVES model, to better simulate cotton production under film mulching and severe salinity," Agricultural Water Management, Elsevier, vol. 288(C).
    7. Seidu, Razak & Drechsel, Pay, 2011. "Analyse cout-efficacite des interventions pour reduire les maladies diarrheiques chez les consommateurs de laitues irriguees avec des eaux usees au Ghana. In French," Book Chapters,, International Water Management Institute.
    8. Wang, Lichun & Ning, Songrui & Chen, Xiaoli & Li, Youli & Guo, Wenzhong & Ben-Gal, Alon, 2021. "Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Yang, Hui & Du, Taisheng & Mao, Xiaomin & Ding, Risheng & Shukla, Manoj K., 2019. "A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model," Agricultural Water Management, Elsevier, vol. 213(C), pages 116-127.
    10. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    11. Wang, Xiangping & Liu, Guangming & Yang, Jingsong & Huang, Guanhua & Yao, Rongjiang, 2017. "Evaluating the effects of irrigation water salinity on water movement, crop yield and water use efficiency by means of a coupled hydrologic/crop growth model," Agricultural Water Management, Elsevier, vol. 185(C), pages 13-26.
    12. Zemin Zhang & Zhanyu Zhang & Genxiang Feng & Peirong Lu & Mingyi Huang & Xinyu Zhao, 2022. "Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    13. Liu, Lining & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Wei, Congmin & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Balancing economic benefits and environmental repercussions based on smart irrigation by regulating root zone water and salinity dynamics," Agricultural Water Management, Elsevier, vol. 285(C).
    14. Ma, Kai & Wang, Zhenhua & Li, Haiqiang & Wang, Tianyu & Chen, Rui, 2022. "Effects of nitrogen application and brackish water irrigation on yield and quality of cotton," Agricultural Water Management, Elsevier, vol. 264(C).
    15. Kumar, P. & Sarangi, A. & Singh, D.K. & Parihar, S.S. & Sahoo, R.N., 2015. "Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model," Agricultural Water Management, Elsevier, vol. 148(C), pages 72-83.
    16. Xin, Lang & Tang, Maosong & Zhang, Lei & Huang, Weixiong & Wang, Xingpeng & Gao, Yang, 2024. "Effects of saline-fresh water rotation irrigation on photosynthetic characteristics and leaf ultrastructure of tomato plants in a greenhouse," Agricultural Water Management, Elsevier, vol. 292(C).
    17. Dong, Liming & Lei, Guoqing & Huang, Jiesheng & Zeng, Wenzhi, 2023. "Improving crop modeling in saline soils by predicting root length density dynamics with machine learning algorithms," Agricultural Water Management, Elsevier, vol. 287(C).
    18. Genxiang Feng & Zhanyu Zhang & Zemin Zhang, 2019. "Evaluating the Sustainable Use of Saline Water Irrigation on Soil Water-Salt Content and Grain Yield under Subsurface Drainage Condition," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    19. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    20. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:214:y:2024:i:c:s0308521x23002445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.