IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v160y2015icp14-21.html
   My bibliography  Save this article

Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality

Author

Listed:
  • Bedbabis, Saida
  • Trigui, Dhouha
  • Ben Ahmed, Chedlia
  • Clodoveo, Maria Lisa
  • Camposeo, Salvatore
  • Vivaldi, Gaetano Alessandro
  • Ben Rouina, Béchir

Abstract

In Tunisia, water scarcity is one of the major constraints for agricultural activities. The reuse of treated wastewater (TWW) in agriculture can be a sustainable solution to face water scarcity. The research was conducted for a period of ten years in an olive orchard planted on a sandy–silty soil and subjected to two different irrigation treatments: (a) well water (WW) and (b) treated wastewater (TWW). The main aim of the present study was to investigate the influence of irrigation with TWW on soil chemical properties, olive tree yield and on virgin olive oil (VOO) quality during an heavy crop year (“on year”) in “Chemlali” olive orchard. Soil samples were collected at the beginning of the study (before irrigation), after five and ten years for each treatment. pH, electrical conductivity (EC), organic matter, major elements, salts and heavy metals contents in soil were investigated. Standard quality parameters, chlorophyll, β-carotene, total phenols (TP), induction time and total tocopherols such as α-,β-,γ-,δ-tocopherol of VOOs were also investigated. Results showed that irrigation with TWW increased soil pH, EC, OM, major elements, salts and heavy metals contents. Data obtained indicated that standard quality indices (free acidity, K232, and K270) of VOO and oil content were not affected significantly by water quality. Instead, chlorophyll, total phenols, induction time and δ-tocopherol values decreased significantly after ten years of irrigation with TWW. However, both fruit water content, and the concentrations of β-carotene and tocopherols (α, β and γ) in VOO increased.

Suggested Citation

  • Bedbabis, Saida & Trigui, Dhouha & Ben Ahmed, Chedlia & Clodoveo, Maria Lisa & Camposeo, Salvatore & Vivaldi, Gaetano Alessandro & Ben Rouina, Béchir, 2015. "Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality," Agricultural Water Management, Elsevier, vol. 160(C), pages 14-21.
  • Handle: RePEc:eee:agiwat:v:160:y:2015:i:c:p:14-21
    DOI: 10.1016/j.agwat.2015.06.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.06.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chartzoulakis, K.S., 2005. "Salinity and olive: Growth, salt tolerance, photosynthesis and yield," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 108-121, September.
    2. Shalhevet, Joseph, 1994. "Using water of marginal quality for crop production: major issues," Agricultural Water Management, Elsevier, vol. 25(3), pages 233-269, July.
    3. Suarez, Donald L. & Wood, James D. & Lesch, Scott M., 2006. "Effect of SAR on water infiltration under a sequential rain-irrigation management system," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 150-164, November.
    4. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    5. Al-Absi, K.M. & Al-Nasir, F.M. & Mahadeen, A.Y., 2009. "Mineral content of three olive cultivars irrigated with treated industrial wastewater," Agricultural Water Management, Elsevier, vol. 96(4), pages 616-626, April.
    6. Melgar, J.C. & Mohamed, Y. & Serrano, N. & García-Galavís, P.A. & Navarro, C. & Parra, M.A. & Benlloch, M. & Fernández-Escobar, R., 2009. "Long term responses of olive trees to salinity," Agricultural Water Management, Elsevier, vol. 96(7), pages 1105-1113, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Shannag, Hail K. & Al-Mefleh, Naji K. & Freihat, Nawaf M., 2021. "Reuse of wastewaters in irrigation of broad bean and their effect on plant-aphid interaction," Agricultural Water Management, Elsevier, vol. 257(C).
    3. Ben Hassena, Ameni & Zouari, Mohamed & Trabelsi, Lina & Khabou, Wahid & Zouari, Nacim, 2018. "Physiological improvements of young olive tree (Olea europaea L. cv. Chetoui) under short term irrigation with treated wastewater," Agricultural Water Management, Elsevier, vol. 207(C), pages 53-58.
    4. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    6. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    7. Tekaya, Meriem & Mechri, Beligh & Dabbaghi, Olfa & Mahjoub, Zoubeir & Laamari, Salwa & Chihaoui, Badreddine & Boujnah, Dalenda & Hammami, Mohamed & Chehab, Hechmi, 2016. "Changes in key photosynthetic parameters of olive trees following soil tillage and wastewater irrigation, modified olive oil quality," Agricultural Water Management, Elsevier, vol. 178(C), pages 180-188.
    8. Wiem Sdiri & Huda S. AlSalem & Soha T. Al-Goul & Mona S. Binkadem & Hedi Ben Mansour, 2023. "Assessing the Effects of Treated Wastewater Irrigation on Soil Physico-Chemical Properties," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    9. Mkhinini, Marouane & Boughattas, Iteb & Alphonse, Vanessa & Livet, Alexandre & Gıustı-Mıller, Stéphanie & Bannı, Mohamed & Bousserrhıne, Noureddine, 2020. "Heavy metal accumulation and changes in soil enzymes activities and bacterial functional diversity under long-term treated wastewater irrigation in East Central region of Tunisia (Monastir governorate," Agricultural Water Management, Elsevier, vol. 235(C).
    10. Giacalone, F. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G. & Cipollina, A., 2019. "Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment," Energy, Elsevier, vol. 181(C), pages 532-547.
    11. Ayoub, Salam & Al-Shdiefat, Saleh & Rawashdeh, Hamzeh & Bashabsheh, Ibrahim, 2016. "Utilization of reclaimed wastewater for olive irrigation: Effect on soil properties, tree growth, yield and oil content," Agricultural Water Management, Elsevier, vol. 176(C), pages 163-169.
    12. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    13. Christou, Anastasis & Maratheftis, Grivas & Elia, Michael & Hapeshi, Evroula & Michael, Costas & Fatta-Kassinos, Despo, 2016. "Effects of wastewater applied with discrete irrigation techniques on strawberry plants’ productivity and the safety, quality characteristics and antioxidant capacity of fruits," Agricultural Water Management, Elsevier, vol. 173(C), pages 48-54.
    14. Chehab, Hechmi & Tekaya, Meriem & Hajlaoui, Hichem & Abdelhamid, Sofiane & Gouiaa, Mohamed & Sfina, Hanene & Chihaoui, Badreddine & Boujnah, Dalenda & Mechri, Beligh, 2020. "Complementary irrigation with saline water and soil organic amendments modified soil salinity, leaf Na+, productivity and oil phenols of olive trees (cv. Chemlali) grown under semiarid conditions," Agricultural Water Management, Elsevier, vol. 237(C).
    15. Maaß, Oliver & Grundmann, Philipp, 2016. "Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany)," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 195-211.
    16. Sdiri, Wiem & Dabbou, Samia & Chehab, Hechmi & Selvaggini, Roberto & Servili, Maurizio & Di Bella, Giuseppa & Mansour, Hedi Ben, 2020. "Quality characteristics and chemical evaluation of Chemlali olive oil produced under dairy wastewater irrigation," Agricultural Water Management, Elsevier, vol. 236(C).
    17. Varvara Andreou & Sofia Chanioti & Panagiota Stergiou & George Katsaros, 2021. "Valorization of the Olive Oil Production Residue: Healthy Ingredient for Developing High Value-Added Spread," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    18. Demetrio Antonio Zema & Bruno Gianmarco Carrà & Agostino Sorgonà & Antonino Zumbo & Manuel Esteban Lucas-Borja & Isabel Miralles & Raúl Ortega & Rocío Soria & Santo Marcello Zimbone & Paolo Salvatore , 2023. "Sustainable Use of Treated Municipal Wastewater after Chlorination: Short-Term Effects on Crops and Soils," Sustainability, MDPI, vol. 15(15), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghrab, Mohamed & Gargouri, Kamel & Bentaher, Hatem & Chartzoulakis, Kostas & Ayadi, Mohamed & Ben Mimoun, Mehdi & Masmoudi, Mohamed Moncef & Ben Mechlia, Netij & Psarras, Georgios, 2013. "Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate," Agricultural Water Management, Elsevier, vol. 123(C), pages 1-11.
    2. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    3. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Aragüés, R. & Medina, E.T. & Martínez-Cob, A. & Faci, J., 2014. "Effects of deficit irrigation strategies on soil salinization and sodification in a semiarid drip-irrigated peach orchard," Agricultural Water Management, Elsevier, vol. 142(C), pages 1-9.
    5. Melgar, J.C. & Mohamed, Y. & Serrano, N. & García-Galavís, P.A. & Navarro, C. & Parra, M.A. & Benlloch, M. & Fernández-Escobar, R., 2009. "Long term responses of olive trees to salinity," Agricultural Water Management, Elsevier, vol. 96(7), pages 1105-1113, July.
    6. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    7. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    8. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).
    9. Trabelsi, Lina & Gargouri, Kamel & Ayadi, Mohamed & Mbadra, Chaker & Ben Nasr, Mohamed & Ben Mbarek, Hadda & Ghrab, Mohamed & Ben Ahmed, Gouta & Kammoun, Yasmine & Loukil, Emna & Maktouf, Sameh & Khli, 2022. "Impact of drought and salinity on olive potential yield, oil and fruit qualities (cv. Chemlali) in an arid climate," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Boutheina Gargouri & Samia Ben Brahim & Fatma Marrakchi & Bechir Ben Rouina & Wojciech Kujawski & Mohamed Bouaziz, 2022. "Impact of Wastewater Spreading on Properties of Tunisian Soil under Arid Climate," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    11. Bourazanis, G. & Roussos, P.A. & Argyrokastritis, I. & Kosmas, C. & Kerkides, P., 2016. "Evaluation of the use of treated municipal waste water on the yield, oil quality, free fatty acids’ profile and nutrient levels in olive trees cv Koroneiki, in Greece," Agricultural Water Management, Elsevier, vol. 163(C), pages 1-8.
    12. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2004. "Comparison of corn yield response to plant water stress caused by salinity and by drought," Agricultural Water Management, Elsevier, vol. 65(2), pages 95-101, March.
    13. Al-Absi, K.M. & Al-Nasir, F.M. & Mahadeen, A.Y., 2009. "Mineral content of three olive cultivars irrigated with treated industrial wastewater," Agricultural Water Management, Elsevier, vol. 96(4), pages 616-626, April.
    14. Ferreyra, Raul E. & Aljaro, Agustin U. & Ruiz, Rafael Sch. & Rojas, Leonardo P. & Oster, J. D., 1997. "Behavior of 42 crop species grown in saline soils with high boron concentrations," Agricultural Water Management, Elsevier, vol. 34(2), pages 111-124, August.
    15. Hamilton, Andrew J. & Boland, Anne-Maree & Stevens, Daryl & Kelly, Jim & Radcliffe, John & Ziehrl, Angelika & Dillon, Peter & Paulin, Bob, 2005. "Position of the Australian horticultural industry with respect to the use of reclaimed water," Agricultural Water Management, Elsevier, vol. 71(3), pages 181-209, February.
    16. María del Pino Palacios-Diaz & Juan Ramón Fernández-Vera & Jose Manuel Hernández-Moreno & Regla Amorós & Vanessa Mendoza-Grimón, 2023. "Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde," Agriculture, MDPI, vol. 13(1), pages 1-18, January.
    17. Qadir, M. & Boers, Th. M. & Schubert, S. & Ghafoor, A. & Murtaza, G., 2003. "Agricultural water management in water-starved countries: challenges and opportunities," Agricultural Water Management, Elsevier, vol. 62(3), pages 165-185, October.
    18. Peragón, Juan M. & Pérez-Latorre, Francisco J. & Delgado, Antonio & Tóth, Tibor, 2018. "Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards," Agricultural Water Management, Elsevier, vol. 202(C), pages 33-41.
    19. Bern, Carleton R. & Breit, George N. & Healy, Richard W. & Zupancic, John W., 2013. "Deep subsurface drip irrigation using coal-bed sodic water: Part II. Geochemistry," Agricultural Water Management, Elsevier, vol. 118(C), pages 135-149.
    20. Mojid, M.A. & Murad, K.F.I. & Tabriz, S.S. & Wyseure, G.C.L., 2013. "An advantageous level of irrigation water salinity for wheat cultivation," Journal of the Bangladesh Agricultural University, Bangladesh Agricultural University Research System (BAURES), vol. 11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:160:y:2015:i:c:p:14-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.