IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v99y2011i1p33-41.html
   My bibliography  Save this article

Soil salinity and sodicity effects of wastewater irrigation in South East Australia

Author

Listed:
  • Muyen, Zahida
  • Moore, Graham A.
  • Wrigley, Roger J.

Abstract

Although ‘sewage farming’ or wastewater irrigation started in Australia in the latter parts of the 19th century, it was in the late 1960s that a considerable interest was revived in arid and semi-arid parts of the world due to scarcity of alternative water sources and the urgency to increase local food production. The practice has manifold benefits in the form of water conservation, nutrient recycling, surface and ground water pollution prevention. But for arid and semi-arid regions like many parts of Australia, while wastewater irrigation can be an attractive solution to irrigation water problems, it might not be the ideal solution for the common soil types encountered in these regions. Due to characteristic low rainfall, high evaporation and low leaching, these soils tend to have higher salt accumulations. This paper examines the soil salinity and sodicity effects of wastewater irrigation in soil types typical to South Eastern Australia and takes the soils of Western Treatment Plant (WTP) as a case study to highlight these issues.

Suggested Citation

  • Muyen, Zahida & Moore, Graham A. & Wrigley, Roger J., 2011. "Soil salinity and sodicity effects of wastewater irrigation in South East Australia," Agricultural Water Management, Elsevier, vol. 99(1), pages 33-41.
  • Handle: RePEc:eee:agiwat:v:99:y:2011:i:1:p:33-41
    DOI: 10.1016/j.agwat.2011.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411001880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suarez, Donald L. & Wood, James D. & Lesch, Scott M., 2006. "Effect of SAR on water infiltration under a sequential rain-irrigation management system," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 150-164, November.
    2. Sharma, Bharat R. & Minhas, P.S., 2005. "Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 136-151, September.
    3. Qadir, M. & Ghafoor, A. & Murtaza, G., 2001. "Use of saline-sodic waters through phytoremediation of calcareous saline-sodic soils," Agricultural Water Management, Elsevier, vol. 50(3), pages 197-210, September.
    4. Jalali, M. & Merikhpour, H. & Kaledhonkar, M.J. & Van Der Zee, S.E.A.T.M., 2008. "Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils," Agricultural Water Management, Elsevier, vol. 95(2), pages 143-153, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bern, Carleton R. & Breit, George N. & Healy, Richard W. & Zupancic, John W., 2013. "Deep subsurface drip irrigation using coal-bed sodic water: Part II. Geochemistry," Agricultural Water Management, Elsevier, vol. 118(C), pages 135-149.
    2. Minhas, P.S. & Qadir, Manzoor & Yadav, R.K., 2019. "Groundwater irrigation induced soil sodification and response options," Agricultural Water Management, Elsevier, vol. 215(C), pages 74-85.
    3. Chaganti, Vijayasatya N. & Crohn, David M. & Šimůnek, Jirka, 2015. "Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water," Agricultural Water Management, Elsevier, vol. 158(C), pages 255-265.
    4. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    5. Singh, R.B. & Chauhan, C.P.S. & Minhas, P.S., 2009. "Water production functions of wheat (Triticum aestivum L.) irrigated with saline and alkali waters using double-line source sprinkler system," Agricultural Water Management, Elsevier, vol. 96(5), pages 736-744, May.
    6. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    7. B. Mostafazadeh-Fard & M. Heidarpour & A. Aghakhani & M. Feizi, 2008. "Effects of leaching on soil desalinization for wheat crop in an arid region," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 54(1), pages 20-29.
    8. Qadir, M. & Boers, Th. M. & Schubert, S. & Ghafoor, A. & Murtaza, G., 2003. "Agricultural water management in water-starved countries: challenges and opportunities," Agricultural Water Management, Elsevier, vol. 62(3), pages 165-185, October.
    9. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    10. Thayalakumaran, T. & Bethune, M.G. & McMahon, T.A., 2007. "Achieving a salt balance--Should it be a management objective?," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 1-12, August.
    11. Bedbabis, Saida & Trigui, Dhouha & Ben Ahmed, Chedlia & Clodoveo, Maria Lisa & Camposeo, Salvatore & Vivaldi, Gaetano Alessandro & Ben Rouina, Béchir, 2015. "Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality," Agricultural Water Management, Elsevier, vol. 160(C), pages 14-21.
    12. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    13. Shouse, P.J. & Goldberg, S. & Skaggs, T.H. & Soppe, R.W.O. & Ayars, J.E., 2010. "Changes in spatial and temporal variability of SAR affected by shallow groundwater management of an irrigated field, California," Agricultural Water Management, Elsevier, vol. 97(5), pages 673-680, May.
    14. Cao, Yune & Tian, Yongqiang & Gao, Lihong & Chen, Qingyun, 2016. "Attenuating the negative effects of irrigation with saline water on cucumber (Cucumis sativus L.) by application of straw biological-reactor," Agricultural Water Management, Elsevier, vol. 163(C), pages 169-179.
    15. Xu, Hailiang & Ye, Mao & Li, Jimei, 2008. "The water transfer effects on agricultural development in the lower Tarim River, Xinjiang of China," Agricultural Water Management, Elsevier, vol. 95(1), pages 59-68, January.
    16. Jing Wang & Aiqin Zhao & Fei Ma & Jili Liu & Guoju Xiao & Xing Xu, 2023. "Amendment of Saline–Alkaline Soil with Flue-Gas Desulfurization Gypsum in the Yinchuan Plain, Northwest China," Sustainability, MDPI, vol. 15(11), pages 1-11, May.
    17. Das, Bianca T. & Menzies, Neal W. & Dalzell, Scott A. & McKenna, Brigid A. & Kopittke, Peter M., 2022. "Avoiding the point of no return: Maintaining infiltration to remediate saline-sodic Vertosols in high rainfall environments," Agricultural Water Management, Elsevier, vol. 270(C).
    18. Pereira, B.F.F. & He, Z.L. & Stoffella, P.J. & Melfi, A.J., 2011. "Reclaimed wastewater: Effects on citrus nutrition," Agricultural Water Management, Elsevier, vol. 98(12), pages 1828-1833, October.
    19. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    20. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:99:y:2011:i:1:p:33-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.