IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v166y2016icp53-69.html
   My bibliography  Save this article

Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties

Author

Listed:
  • Niu, G.
  • Li, Y.P.
  • Huang, G.H.
  • Liu, J.
  • Fan, Y.R.

Abstract

In this study, an interactive two-stage fuzzy stochastic programming (ITFSP) method is developed for supporting crop planning and water resource allocation under uncertainty. ITFSP can effectively address uncertainties expressed as probability distributions and fuzzy-boundary intervals. It can also be utilized for in-depth analyzing different policy scenarios that are integrated with various economic implications since penalties are executed with recourse actions. ITFSP enables decision makers to identify a tradeoff between higher objective values and feasibility of constraints. The ITFSP method is applied to a real case of Hetao irrigation district, one of the largest irrigation districts for food production in China. Different scenarios for crop planning targets which reflect the attitudes of local authority to the available water resources are examined. Results discover that different scenarios lead to changed irrigation patterns, water shortages, penalties, as well as system benefits. Results also reveal that decision makers would be more positive to water allocation to crops of wheat and oil than maize; oil crop always possesses the priority of water allocation and would be partly satisfied even under the low flow. Solutions are useful for determining optimized cropland use and water allocation patterns in such an agricultural system in the arid region, which could hedge appropriately against future available water levels in more profitable and sustainable ways.

Suggested Citation

  • Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
  • Handle: RePEc:eee:agiwat:v:166:y:2016:i:c:p:53-69
    DOI: 10.1016/j.agwat.2015.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415301840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Bhabagrahi Sahoo & Anil Lohani & Rohit Sahu, 2006. "Fuzzy Multiobjective and Linear Programming Based Management Models for Optimal Land-Water-Crop System Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 931-948, December.
    3. Zhou, H.H. & Chen, Y.N. & Li, W.H., 2010. "Soil properties and their spatial pattern in an oasis on the lower reaches of the Tarim River, northwest China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1915-1922, November.
    4. Li, Y.P. & Huang, G.H. & Nie, S.L. & Chen, X., 2011. "A robust modeling approach for regional water management under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 98(10), pages 1577-1588, August.
    5. Biswas, Animesh & Pal, Bijay Baran, 2005. "Application of fuzzy goal programming technique to land use planning in agricultural system," Omega, Elsevier, vol. 33(5), pages 391-398, October.
    6. Sethi, Laxmi Narayan & Panda, Sudhindra N. & Nayak, Manoj K., 2006. "Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India," Agricultural Water Management, Elsevier, vol. 83(3), pages 209-220, June.
    7. Tran, Lap Doc & Schilizzi, Steven & Chalak, Morteza & Kingwell, Ross, 2011. "Optimizing competitive uses of water for irrigation and fisheries," Agricultural Water Management, Elsevier, vol. 101(1), pages 42-51.
    8. Zhang, Xiaodong & Huang, Guo H. & Nie, Xianghui, 2009. "Optimal decision schemes for agricultural water quality management planning with imprecise objective," Agricultural Water Management, Elsevier, vol. 96(12), pages 1723-1731, December.
    9. Huang, Y. & Li, Y.P. & Chen, X. & Ma, Y.G., 2012. "Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China," Agricultural Water Management, Elsevier, vol. 107(C), pages 74-85.
    10. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    11. Jimenez, Mariano & Arenas, Mar & Bilbao, Amelia & Rodri'guez, M. Victoria, 2007. "Linear programming with fuzzy parameters: An interactive method resolution," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1599-1609, March.
    12. Kang, Mingoo & Park, Seungwoo, 2014. "Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations," Agricultural Water Management, Elsevier, vol. 143(C), pages 131-141.
    13. Sharma, Bharat R. & Minhas, P.S., 2005. "Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 136-151, September.
    14. Dattatray Regulwar & Jyotiba Gurav, 2011. "Irrigation Planning Under Uncertainty—A Multi Objective Fuzzy Linear Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1387-1416, March.
    15. Bautista, Joaquín & Pereira, Jordi, 2006. "Modeling the problem of locating collection areas for urban waste management. An application to the metropolitan area of Barcelona," Omega, Elsevier, vol. 34(6), pages 617-629, December.
    16. Mun, S. & Sassenrath, G.F. & Schmidt, A.M. & Lee, N. & Wadsworth, M.C. & Rice, B. & Corbitt, J.Q. & Schneider, J.M. & Tagert, M.L. & Pote, J. & Prabhu, R., 2015. "Uncertainty analysis of an irrigation scheduling model for water management in crop production," Agricultural Water Management, Elsevier, vol. 155(C), pages 100-112.
    17. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    18. Li, Y.P. & Huang, G.H. & Wang, G.Q. & Huang, Y.F., 2009. "FSWM: A hybrid fuzzy-stochastic water-management model for agricultural sustainability under uncertainty," Agricultural Water Management, Elsevier, vol. 96(12), pages 1807-1818, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nie, S. & Li, Y.P. & Liu, J. & Huang, Charley Z., 2017. "Risk management of energy system for identifying optimal power mix with financial-cost minimization and environmental-impact mitigation under uncertainty," Energy Economics, Elsevier, vol. 61(C), pages 313-329.
    2. Xiao-Bo Luan & Pu-Te Wu & Shi-Kun Sun & Xiao-Lei Li & Yu-Bao Wang & Xue-Rui Gao, 2018. "Impact of Land Use Change on Hydrologic Processes in a Large Plain Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3203-3217, July.
    3. Yue, Qiong & Zhang, Fan & Zhang, Chenglong & Zhu, Hua & Tang, Yikuan & Guo, Ping, 2020. "A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 230(C).
    4. Sun, J. & Li, Y.P. & Suo, C. & Liu, Y.R., 2019. "Impacts of irrigation efficiency on agricultural water-land nexus system management under multiple uncertainties—A case study in Amu Darya River basin, Central Asia," Agricultural Water Management, Elsevier, vol. 216(C), pages 76-88.
    5. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    6. Li, Xiaojuan & Kang, Shaozhong & Niu, Jun & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng, 2017. "Applying uncertain programming model to improve regional farming economic benefits and water productivity," Agricultural Water Management, Elsevier, vol. 179(C), pages 352-365.
    7. Niu, Geng & Zheng, Yi & Han, Feng & Qin, Huapeng, 2019. "The nexus of water, ecosystems and agriculture in arid areas: A multiobjective optimization study on system efficiencies," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Min Chen & Songhao Shang & Wei Li, 2020. "Integrated Modeling Approach for Sustainable Land-Water-Food Nexus Management," Agriculture, MDPI, vol. 10(4), pages 1-19, April.
    9. Liu, Qi & Niu, Jun & Wood, Jeffrey D. & Kang, Shaozhong, 2022. "Spatial optimization of cropping pattern in the upper-middle reaches of the Heihe River basin, Northwest China," Agricultural Water Management, Elsevier, vol. 264(C).
    10. Wenjie Geng & Xiaohui Jiang & Yuxin Lei & Jinyan Zhang & Huan Zhao, 2021. "The Allocation of Water Resources in the Midstream of Heihe River for the “97 Water Diversion Scheme” and the “Three Red Lines”," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    11. Mohammad Ebrahim Banihabib & Mahmoud Mohammad Rezapour Tabari & Mohsen Mohammad Rezapour Tabari, 2019. "Development of a Fuzzy Multi-Objective Heuristic Model for Optimum Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3673-3689, September.
    12. Wenzhe Luo & Yanling Jiang & Yuansheng Chen & Zhigang Yu, 2023. "Coupling Coordination and Spatial-Temporal Evolution of Water-Land-Food Nexus: A Case Study of Hebei Province at a County-Level," Land, MDPI, vol. 12(3), pages 1-22, March.
    13. Zhang, W.J. & Tan, Q. & Zhang, T.Y., 2021. "A risk-averse stochastic quadratic model with recourse for supporting irrigation water management in uncertain and nonlinear environments," Agricultural Water Management, Elsevier, vol. 244(C).
    14. Ali Reza Nafarzadegan & Hassan Vagharfard & Mohammad Reza Nikoo & Ahmad Nohegar, 2018. "Socially-Optimal and Nash Pareto-Based Alternatives for Water Allocation under Uncertainty: an Approach and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2985-3000, July.
    15. Aster Tesfaye Hordofa & Olkeba Tolessa Leta & Tena Alamirew & Abebe Demissie Chukalla, 2022. "Response of Winter Wheat Production to Climate Change in Ziway Lake Basin," Sustainability, MDPI, vol. 14(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Y. & Li, Y.P. & Chen, X. & Ma, Y.G., 2012. "Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China," Agricultural Water Management, Elsevier, vol. 107(C), pages 74-85.
    2. Liu, J. & Li, Y.P. & Huang, G.H. & Zeng, X.T., 2014. "A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 50-66.
    3. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.
    4. Linker, Raphael, 2020. "Unified framework for model-based optimal allocation of crop areas and water," Agricultural Water Management, Elsevier, vol. 228(C).
    5. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    6. Chenglong Zhang & Qiong Yue & Ping Guo, 2019. "A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan," IJERPH, MDPI, vol. 16(11), pages 1-18, May.
    7. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    8. Zhang, Y.M. & Lu, H.W. & Nie, X.H. & He, L. & Du, P., 2014. "An interactive inexact fuzzy bounded programming approach for agricultural water quality management," Agricultural Water Management, Elsevier, vol. 133(C), pages 104-111.
    9. Dai, Z.Y. & Li, Y.P., 2013. "A multistage irrigation water allocation model for agricultural land-use planning under uncertainty," Agricultural Water Management, Elsevier, vol. 129(C), pages 69-79.
    10. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    11. Li, Xiaojuan & Kang, Shaozhong & Niu, Jun & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng, 2017. "Applying uncertain programming model to improve regional farming economic benefits and water productivity," Agricultural Water Management, Elsevier, vol. 179(C), pages 352-365.
    12. Jyotiba Gurav & D. Regulwar, 2012. "Multi Objective Sustainable Irrigation Planning with Decision Parameters and Decision Variables Fuzzy in Nature," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 3005-3021, August.
    13. D. Regulwar & Jyotiba Gurav, 2012. "Sustainable Irrigation Planning with Imprecise Parameters under Fuzzy Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3871-3892, October.
    14. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    15. Ramtin Joolaie & Ahmad Abedi Sarvestani & Fatemeh Taheri & Steven Van Passel & Hossein Azadi, 2017. "Sustainable cropping pattern in North Iran: application of fuzzy goal programming," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2199-2216, December.
    16. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    17. Dattatray Regulwar & Jyotiba Gurav, 2011. "Irrigation Planning Under Uncertainty—A Multi Objective Fuzzy Linear Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1387-1416, March.
    18. Li, Mo & Guo, Ping & Singh, Vijay P., 2016. "An efficient irrigation water allocation model under uncertainty," Agricultural Systems, Elsevier, vol. 144(C), pages 46-57.
    19. Patoghi, Amirhosein & Mousavi, Seyed Meysam, 2021. "A new approach for material ordering and multi-mode resource constraint project scheduling problem in a multi-site context under interval-valued fuzzy uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    20. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:166:y:2016:i:c:p:53-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.