IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i5p1387-1416.html
   My bibliography  Save this article

Irrigation Planning Under Uncertainty—A Multi Objective Fuzzy Linear Programming Approach

Author

Listed:
  • Dattatray Regulwar
  • Jyotiba Gurav

Abstract

The problem of irrigation planning becomes more complex by considering an uncertainty. The uncertainties can be tackled by formulating the problem of irrigation planning as Fuzzy Linear Programming (FLP). FLP models can incorporate the scenario of real world problem. In the present study, Multi Objective Fuzzy Linear Programming (MOFLP) irrigation planning model is formulated for deriving the optimal cropping pattern plan for the case study of Jayakwadi project in the Godavari river sub basin in Maharashtra State, India. Four conflicting objectives are considered such as Net Benefits (NB), Crop/Yield Production (CP), Employment Generation/Labour Requirement (EG) and Manure Utilization (MU). Four different cases are considered to incorporate the uncertainty in MOFLP model. To include the uncertainty in irrigation planning problem only objectives are taken as fuzzy and constraints are crisp in nature in Case-I. To consider the uncertainty involved in availability of resources, in Case-II the stipulations are fuzzy. The technological coefficients are fuzzy in Case-III. The Case-IV includes both technological coefficients and stipulations fuzzy. The level of satisfaction (λ) works out to be 0.58, 0.50, 0.50 and 0.28 respectively for Case-I to IV. The results obtained in Case-IV are more realistic and promising as it involves the uncertainty in technological coefficients and stipulations simultaneously. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Dattatray Regulwar & Jyotiba Gurav, 2011. "Irrigation Planning Under Uncertainty—A Multi Objective Fuzzy Linear Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1387-1416, March.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:5:p:1387-1416
    DOI: 10.1007/s11269-010-9750-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9750-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9750-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhabagrahi Sahoo & Anil Lohani & Rohit Sahu, 2006. "Fuzzy Multiobjective and Linear Programming Based Management Models for Optimal Land-Water-Crop System Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 931-948, December.
    2. Jimenez, Mariano & Arenas, Mar & Bilbao, Amelia & Rodri'guez, M. Victoria, 2007. "Linear programming with fuzzy parameters: An interactive method resolution," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1599-1609, March.
    3. D. Regulwar & P Raj, 2008. "Development of 3-D Optimal Surface for Operation Policies of a Multireservoir in Fuzzy Environment Using Genetic Algorithm for River Basin Development and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(5), pages 595-610, May.
    4. Laxmi Sethi & D. Kumar & Sudhindra Panda & Bimal Mal, 2002. "Optimal Crop Planning and Conjunctive Use of Water Resources in a Coastal River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(2), pages 145-169, April.
    5. Itoh, Takeshi & Ishii, Hiroaki & Nanseki, Teruaki, 2003. "A model of crop planning under uncertainty in agricultural management," International Journal of Production Economics, Elsevier, vol. 81(1), pages 555-558, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjay Raul & Sudhindra Panda, 2013. "Simulation-Optimization Modeling for Conjunctive Use Management under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1323-1350, March.
    2. Li, Xuemin & Zhang, Chenglong & Huo, Zailin & Adeloye, Adebayo J., 2020. "A sustainable irrigation water management framework coupling water-salt processes simulation and uncertain optimization in an arid area," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Mohd Fahmi Bin Mad Ali & Mohd Khairol Anuar Bin Mohd Ariffin & Aidin Delgoshaei & Faizal Bin Mustapha & Eris Elianddy Bin Supeni, 2023. "A Comprehensive 3-Phase Framework for Determining the Customer’s Product Usage in a Food Supply Chain," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    4. Chenglong Zhang & Qiong Yue & Ping Guo, 2019. "A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan," IJERPH, MDPI, vol. 16(11), pages 1-18, May.
    5. Jyotiba Gurav & D. Regulwar, 2012. "Multi Objective Sustainable Irrigation Planning with Decision Parameters and Decision Variables Fuzzy in Nature," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 3005-3021, August.
    6. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.
    7. Yue, Qiong & Guo, Ping & Wu, Hui & Wang, Youzhi & Zhang, Chenglong, 2022. "Towards sustainable circular agriculture: An integrated optimization framework for crop-livestock-biogas-crop recycling system management under uncertainty," Agricultural Systems, Elsevier, vol. 196(C).
    8. M. Mohammad Rezapour Tabari, 2015. "Conjunctive Use Management under Uncertainty Conditions in Aquifer Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2967-2986, June.
    9. Farshad Rezaei & Hamid R. Safavi & Maryam Zekri, 2017. "A Hybrid Fuzzy-Based Multi-Objective PSO Algorithm for Conjunctive Water Use and Optimal Multi-Crop Pattern Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1139-1155, March.
    10. Dariane, A.B. & Ghasemi, M. & Karami, F. & Azaranfar, A. & Hatami, S., 2021. "Crop pattern optimization in a multi-reservoir system by combining many-objective and social choice methods," Agricultural Water Management, Elsevier, vol. 257(C).
    11. D. Regulwar & Jyotiba Gurav, 2012. "Sustainable Irrigation Planning with Imprecise Parameters under Fuzzy Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3871-3892, October.
    12. H. Lu & G. Huang & L. He, 2012. "Simulation-Based Inexact Rough-Interval Programming for Agricultural Irrigation Management: A Case Study in the Yongxin County, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4163-4182, November.
    13. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong, 2018. "An interval multi-objective programming model for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 196(C), pages 24-36.
    14. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    15. J. Maestre-Valero & D. Martínez-Granados & V. Martínez-Alvarez & J. Calatrava, 2013. "Socio-Economic Impact of Evaporation Losses from Reservoirs Under Past, Current and Future Water Availability Scenarios in the Semi-Arid Segura Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1411-1426, March.
    16. Zhang, Chenglong & Guo, Ping, 2018. "FLFP: A fuzzy linear fractional programming approach with double-sided fuzziness for optimal irrigation water allocation," Agricultural Water Management, Elsevier, vol. 199(C), pages 105-119.
    17. S. Dutta & B.C. Sahoo & Rajashree Mishra & S. Acharya, 2016. "Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops Pattern and Water Balance in a Farm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4097-4123, September.
    18. Zhang, Chenglong & Li, Xuemin & Guo, Ping & Huo, Zailin, 2021. "Balancing irrigation planning and risk preference for sustainable irrigated agriculture: A fuzzy credibility-based optimization model with the Hurwicz criterion under uncertainty," Agricultural Water Management, Elsevier, vol. 254(C).
    19. Daniel P. Loucks, 2017. "Managing Water as a Critical Component of a Changing World," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2905-2916, August.
    20. Li, Mo & Guo, Ping & Singh, Vijay P. & Yang, Gaiqiang, 2016. "An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation," Agricultural Water Management, Elsevier, vol. 177(C), pages 10-23.
    21. Li, Xiaojuan & Kang, Shaozhong & Niu, Jun & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng, 2017. "Applying uncertain programming model to improve regional farming economic benefits and water productivity," Agricultural Water Management, Elsevier, vol. 179(C), pages 352-365.
    22. Arman Ganji & Sara Kaviani, 2013. "Probability Analysis of Crop Water Stress Index: An Application of Double Bounded Density Function (DB-CDF)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3791-3802, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Regulwar & Jyotiba Gurav, 2012. "Sustainable Irrigation Planning with Imprecise Parameters under Fuzzy Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3871-3892, October.
    2. Li, Xiaojuan & Kang, Shaozhong & Niu, Jun & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng, 2017. "Applying uncertain programming model to improve regional farming economic benefits and water productivity," Agricultural Water Management, Elsevier, vol. 179(C), pages 352-365.
    3. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    4. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    5. S. Dutta & B.C. Sahoo & Rajashree Mishra & S. Acharya, 2016. "Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops Pattern and Water Balance in a Farm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4097-4123, September.
    6. Dai, Z.Y. & Li, Y.P., 2013. "A multistage irrigation water allocation model for agricultural land-use planning under uncertainty," Agricultural Water Management, Elsevier, vol. 129(C), pages 69-79.
    7. Jyotiba Gurav & D. Regulwar, 2012. "Multi Objective Sustainable Irrigation Planning with Decision Parameters and Decision Variables Fuzzy in Nature," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 3005-3021, August.
    8. Liu, Xing & Lehtonen, Heikki & Purola, Tuomo & Pavlova, Yulia & Rötter, Reimund & Palosuo, Taru, 2016. "Dynamic economic modelling of crop rotations with farm management practices under future pest pressure," Agricultural Systems, Elsevier, vol. 144(C), pages 65-76.
    9. Olcay Polat & Duygu Topaloğlu, 2022. "Collection of different types of milk with multi-tank tankers under uncertainty: a real case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-33, April.
    10. Lodree Jr., Emmett J. & Uzochukwu, Benedict M., 2008. "Production planning for a deteriorating item with stochastic demand and consumer choice," International Journal of Production Economics, Elsevier, vol. 116(2), pages 219-232, December.
    11. Mohebbi, E., 2008. "A note on a production control model for a facility with limited storage capacity in a random environment," European Journal of Operational Research, Elsevier, vol. 190(2), pages 562-570, October.
    12. Tsao, Yu-Chung & Thanh, Vo-Van, 2019. "A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 13-39.
    13. Changyu Zhou & Guohe Huang & Jiapei Chen, 2018. "A Multi-Objective Energy and Environmental Systems Planning Model: Management of Uncertainties and Risks for Shanxi Province, China," Energies, MDPI, vol. 11(10), pages 1-21, October.
    14. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    15. Peidro, David & Mula, Josefa & Jiménez, Mariano & del Mar Botella, Ma, 2010. "A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 65-80, August.
    16. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    17. Liu, J. & Li, Y.P. & Huang, G.H. & Zeng, X.T., 2014. "A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 50-66.
    18. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    19. Anil Jindal & Kuldip Singh Sangwan, 2017. "Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors," Annals of Operations Research, Springer, vol. 257(1), pages 95-120, October.
    20. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:5:p:1387-1416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.