IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v118y2013icp135-149.html
   My bibliography  Save this article

Deep subsurface drip irrigation using coal-bed sodic water: Part II. Geochemistry

Author

Listed:
  • Bern, Carleton R.
  • Breit, George N.
  • Healy, Richard W.
  • Zupancic, John W.

Abstract

Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1mScm−1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation (SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92cm deep. After six years of irrigation, SAR values between 0 and 30cm depth (0.5–1.2) are only slightly increased over non-irrigated soils (0.1–0.5). Only 8–15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water–soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (<0.7mScm−1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1–1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4±1.7wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to <7 and increases the EC to around 4.1mScm−1, thus limiting negative impacts from sodicity. With sustained irrigation, however, downward flow of excess irrigation water depletes gypsum, increasing soil-water SAR to >14 and decreasing EC in soil water to 3.2mScm−1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

Suggested Citation

  • Bern, Carleton R. & Breit, George N. & Healy, Richard W. & Zupancic, John W., 2013. "Deep subsurface drip irrigation using coal-bed sodic water: Part II. Geochemistry," Agricultural Water Management, Elsevier, vol. 118(C), pages 135-149.
  • Handle: RePEc:eee:agiwat:v:118:y:2013:i:c:p:135-149
    DOI: 10.1016/j.agwat.2012.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741200306X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suarez, Donald L. & Wood, James D. & Lesch, Scott M., 2006. "Effect of SAR on water infiltration under a sequential rain-irrigation management system," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 150-164, November.
    2. Chaudhari, S. K. & Somawanshi, R. B., 2004. "Unsaturated flow of different quality irrigation waters through clay, clay loam and silt loam soils and its dependence on soil and solution parameters," Agricultural Water Management, Elsevier, vol. 64(1), pages 69-90, January.
    3. Bajwa, M. S. & Choudhary, O. P. & Josan, A. S., 1992. "Effect of continuous irrigation with sodic and saline-sodic waters on soil properties and crop yields under cotton-wheat rotation in northwestern India," Agricultural Water Management, Elsevier, vol. 22(4), pages 345-356, December.
    4. Johnston, Christopher R. & Vance, George F. & Ganjegunte, Girisha K., 2008. "Irrigation with coalbed natural gas co-produced water," Agricultural Water Management, Elsevier, vol. 95(11), pages 1243-1252, November.
    5. Jalali, M. & Merikhpour, H. & Kaledhonkar, M.J. & Van Der Zee, S.E.A.T.M., 2008. "Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils," Agricultural Water Management, Elsevier, vol. 95(2), pages 143-153, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    2. Yatao Xiao & Chaoxiang Sun & Dezhe Wang & Huiqin Li & Wei Guo, 2023. "Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace," Agriculture, MDPI, vol. 13(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muyen, Zahida & Moore, Graham A. & Wrigley, Roger J., 2011. "Soil salinity and sodicity effects of wastewater irrigation in South East Australia," Agricultural Water Management, Elsevier, vol. 99(1), pages 33-41.
    2. Chaganti, Vijayasatya N. & Crohn, David M. & Šimůnek, Jirka, 2015. "Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water," Agricultural Water Management, Elsevier, vol. 158(C), pages 255-265.
    3. Bern, Carleton R. & Breit, George N. & Healy, Richard W. & Zupancic, John W. & Hammack, Richard, 2013. "Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement," Agricultural Water Management, Elsevier, vol. 118(C), pages 122-134.
    4. Choudhary, O.P. & Ghuman, B.S. & Josan, A.S. & Bajwa, M.S., 2006. "Effect of alternating irrigation with sodic and non-sodic waters on soil properties and sunflower yield," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 151-156, September.
    5. Minhas, P.S. & Dubey, S.K. & Sharma, D.R., 2007. "Comparative affects of blending, intera/inter-seasonal cyclic uses of alkali and good quality waters on soil properties and yields of paddy and wheat," Agricultural Water Management, Elsevier, vol. 87(1), pages 83-90, January.
    6. Hamawand, Ihsan & Yusaf, Talal & Hamawand, Sara G., 2013. "Coal seam gas and associated water: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 550-560.
    7. Johnston, Christopher R. & Vance, George F. & Ganjegunte, Girisha K., 2008. "Irrigation with coalbed natural gas co-produced water," Agricultural Water Management, Elsevier, vol. 95(11), pages 1243-1252, November.
    8. Bedbabis, Saida & Trigui, Dhouha & Ben Ahmed, Chedlia & Clodoveo, Maria Lisa & Camposeo, Salvatore & Vivaldi, Gaetano Alessandro & Ben Rouina, Béchir, 2015. "Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality," Agricultural Water Management, Elsevier, vol. 160(C), pages 14-21.
    9. Mallants, Dirk & Šimůnek, Jirka & Torkzaban, Saeed, 2017. "Determining water quality requirements of coal seam gas produced water for sustainable irrigation," Agricultural Water Management, Elsevier, vol. 189(C), pages 52-69.
    10. Minhas, P.S. & Qadir, Manzoor & Yadav, R.K., 2019. "Groundwater irrigation induced soil sodification and response options," Agricultural Water Management, Elsevier, vol. 215(C), pages 74-85.
    11. Shouse, P.J. & Goldberg, S. & Skaggs, T.H. & Soppe, R.W.O. & Ayars, J.E., 2010. "Changes in spatial and temporal variability of SAR affected by shallow groundwater management of an irrigated field, California," Agricultural Water Management, Elsevier, vol. 97(5), pages 673-680, May.
    12. Adamson, David, 2013. "Buying Paper and Giving Gold: The Murray Darling Basin Plan," Risk and Sustainable Management Group Working Papers 156481, University of Queensland, School of Economics.
    13. Das, Bianca T. & Menzies, Neal W. & Dalzell, Scott A. & McKenna, Brigid A. & Kopittke, Peter M., 2022. "Avoiding the point of no return: Maintaining infiltration to remediate saline-sodic Vertosols in high rainfall environments," Agricultural Water Management, Elsevier, vol. 270(C).
    14. Pereira, B.F.F. & He, Z.L. & Stoffella, P.J. & Melfi, A.J., 2011. "Reclaimed wastewater: Effects on citrus nutrition," Agricultural Water Management, Elsevier, vol. 98(12), pages 1828-1833, October.
    15. Minhas, Paramjit Singh & Bali, Aradhana & Bhardwaj, Ajay Kumar & Singh, Awtar & Yadav, Rajender Kumar, 2021. "Structural stability and hydraulic characteristics of soils irrigated for two decades with waters having residual alkalinity and its neutralization with gypsum and sulfuric acid," Agricultural Water Management, Elsevier, vol. 244(C).
    16. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben & Prigent, Stephane & Stefanakis, Alexandros I., 2021. "Towards agro-environmentally sustainable irrigation with treated produced water in hyper-arid environments," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Zhu, Yan & Yang, Jinzhong & Ye, Ming & Sun, Huaiwei & Shi, Liangsheng, 2017. "Development and application of a fully integrated model for unsaturated-saturated nitrogen reactive transport," Agricultural Water Management, Elsevier, vol. 180(PA), pages 35-49.
    18. Choudhary, O. P. & Josan, A. S. & Bajwa, M. S., 2001. "Yield and fibre quality of cotton cultivars as affected by the build-up of sodium in the soils with sustained sodic irrigations under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 49(1), pages 1-9, July.
    19. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben, 2018. "Reusing oil and gas produced water for irrigation of food crops in drylands," Agricultural Water Management, Elsevier, vol. 206(C), pages 124-134.
    20. Shahrokhnia, Hossein & Wu, Laosheng, 2021. "SALEACH: A new web-based soil salinity leaching model for improved irrigation management," Agricultural Water Management, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:118:y:2013:i:c:p:135-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.