IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v231y2020ics0378377419312892.html
   My bibliography  Save this article

Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth

Author

Listed:
  • Ma, Xiaochi
  • Sanguinet, Karen A.
  • Jacoby, Pete W.

Abstract

Direct root-zone irrigation is a novel subsurface drip irrigation strategy for water conservation. However, a comparison with traditional irrigation methods is lacking to better define the potential advantages of direct root-zone irrigation. A two-year study was conducted to evaluate the performance of Vitis vinifera L. cv. Cabernet Sauvignon under direct root-zone irrigation and surface drip irrigation in a commercial vineyard with loamy sand soil in a semi-arid region of southcentral Washington State, USA. Plant water status, root traits, grape yield, berry morphology and composition, and crop water use efficiency were compared between irrigation methods under three irrigation rates. Compared to surface drip irrigation, direct root-zone irrigation improved grape yield by 9–12% and crop water use efficiency by 9–11% under varied climate conditions with minor effects on berry composition, which could be potentially adjusted by irrigation rate. Moreover, grapevines irrigated through direct root-zone irrigation had 48–67% and 50–54% decrease in root number, respectively, at high and moderate irrigation rates in the upper soil profile (0–60 cm) with a decrease in water stress as revealed by higher midday stem water potential. Irrigation rate was the major factor influencing berry morphology. In fact, reduced irrigation resulted in a decrease in weight, size and number of berries. We conclude that direct root-zone irrigation could be a successful tool for improving yield and crop water use efficiency, potentially encouraging deep rooting to alleviate the water stress in grapevine under seasonal drought, and offering the ability to modify berry morphology and composition by adjusting the amount of water use.

Suggested Citation

  • Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419312892
    DOI: 10.1016/j.agwat.2019.105993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419312892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yusheng Hou & Zhenhua Wang & Huaijun Ding & Wenhao Li & Yue Wen & Jifeng Zhang & Yunqing Dou, 2019. "Evaluation of Suitable Amount of Water and Fertilizer for Mature Grapes in Drip Irrigation in Extreme Arid Regions," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    2. Bern, Carleton R. & Breit, George N. & Healy, Richard W. & Zupancic, John W., 2013. "Deep subsurface drip irrigation using coal-bed sodic water: Part II. Geochemistry," Agricultural Water Management, Elsevier, vol. 118(C), pages 135-149.
    3. Costa, J.M. & Vaz, M. & Escalona, J. & Egipto, R. & Lopes, C. & Medrano, H. & Chaves, M.M., 2016. "Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity," Agricultural Water Management, Elsevier, vol. 164(P1), pages 5-18.
    4. Acevedo-Opazo, C. & Ortega-Farias, S. & Fuentes, S., 2010. "Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 97(7), pages 956-964, July.
    5. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    6. Batchelor, Charles & Lovell, Christopher & Murata, Monica, 1996. "Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens," Agricultural Water Management, Elsevier, vol. 32(1), pages 37-48, November.
    7. Siyal, A.A. & Skaggs, T.H., 2009. "Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation," Agricultural Water Management, Elsevier, vol. 96(6), pages 893-904, June.
    8. van Leeuwen, Cornelis & Darriet, Philippe, 2016. "The Impact of Climate Change on Viticulture and Wine Quality," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 150-167, May.
    9. Barth, H. K., 1999. "Sustainable and effective irrigation through a new subsoil irrigation system (SIS)," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 283-290, May.
    10. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2019. "Performance of direct root-zone deficit irrigation on Vitis vinifera L. cv. Cabernet Sauvignon production and water use efficiency in semi-arid southcentral Washington," Agricultural Water Management, Elsevier, vol. 221(C), pages 47-57.
    11. Mo, Yan & Li, Guangyong & Wang, Dan, 2017. "A sowing method for subsurface drip irrigation that increases the emergence rate, yield, and water use efficiency in spring corn," Agricultural Water Management, Elsevier, vol. 179(C), pages 288-295.
    12. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    13. Pisciotta, Antonino & Di Lorenzo, Rosario & Santalucia, Gioacchino & Barbagallo, Maria Gabriella, 2018. "Response of grapevine (Cabernet Sauvignon cv) to above ground and subsurface drip irrigation under arid conditions," Agricultural Water Management, Elsevier, vol. 197(C), pages 122-131.
    14. Murley, Cameron B. & Sharma, Sumit & Warren, Jason G. & Arnall, Daryl B. & Raun, William R., 2018. "Yield response of corn and grain sorghum to row offsets on subsurface drip laterals," Agricultural Water Management, Elsevier, vol. 208(C), pages 357-362.
    15. Evans, R. G. & Spayd, S. E. & Wample, R. L. & Kroeger, M. W. & Mahan, M. O., 1993. "Water use of Vitis vinifera grapes in Washington," Agricultural Water Management, Elsevier, vol. 23(2), pages 109-124, April.
    16. Martínez-Gimeno, M.A. & Bonet, L. & Provenzano, G. & Badal, E. & Intrigliolo, D.S. & Ballester, C., 2018. "Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 206(C), pages 209-216.
    17. Al-Omran, A.M. & Sheta, A.S. & Falatah, A.M. & Al-Harbi, A.R., 2005. "Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits," Agricultural Water Management, Elsevier, vol. 73(1), pages 43-55, April.
    18. Bern, Carleton R. & Breit, George N. & Healy, Richard W. & Zupancic, John W. & Hammack, Richard, 2013. "Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement," Agricultural Water Management, Elsevier, vol. 118(C), pages 122-134.
    19. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    20. Ayars, J.E. & Fulton, A. & Taylor, B., 2015. "Subsurface drip irrigation in California—Here to stay?," Agricultural Water Management, Elsevier, vol. 157(C), pages 39-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Xuanyue & Wu, Pute & Liu, Xufei & Zhang, Lin & Zhou, Wei & Wang, Zhaoguo, 2022. "A global meta-analysis of fruit tree yield and water use efficiency under deficit irrigation," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Zhang, Jili & Wang, Peng & Long, Huaiyu & Su, Shanshan & Wu, Yige & Wang, Hongrong, 2022. "Metabolomics analysis reveals the physiological mechanism underlying growth restriction in maize roots under continuous negative pressure and stable water supply," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    4. Aydinsakir, Koksal & Buyuktas, Dursun & Dinç, Nazmi & Erdurmus, Cengiz & Bayram, Edip & Yegin, Arzu Bayir, 2021. "Yield and bioethanol productivity of sorghum under surface and subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Cakmakci, Talip & Sahin, Ustun, 2021. "Improving silage maize productivity using recycled wastewater under different irrigation methods," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Xian Liu & Yueyue Xu & Shikun Sun & Xining Zhao & Yubao Wang, 2022. "Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    7. Masoud Pourgholam-Amiji & Abdolmajid Liaghat & Arezoo Ghameshlou & Mojtaba Khoshravesh & Muhammad Mohsin Waqas, 2020. "Investigation Of The Yield And Yield Components Of Rice In Shallow Water Table And Saline," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 36-40, August.
    8. He, Yuelin & Li, Guangde & Xi, Benye & Zhao, Hui & Jia, Liming, 2022. "Fine root plasticity of young Populus tomentosa plantations under drip irrigation and nitrogen fertigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Ma, Xiaochi & Han, Feng & Wu, Jinggui & Ma, Yan & Jacoby, Pete W., 2023. "Optimizing crop water productivity and altering root distribution of Chardonnay grapevine (Vitis vinifera L.) in a silt loam soil through direct root-zone deficit irrigation," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Yatao Xiao & Chaoxiang Sun & Dezhe Wang & Huiqin Li & Wei Guo, 2023. "Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace," Agriculture, MDPI, vol. 13(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2019. "Performance of direct root-zone deficit irrigation on Vitis vinifera L. cv. Cabernet Sauvignon production and water use efficiency in semi-arid southcentral Washington," Agricultural Water Management, Elsevier, vol. 221(C), pages 47-57.
    2. Ma, Xiaochi & Han, Feng & Wu, Jinggui & Ma, Yan & Jacoby, Pete W., 2023. "Optimizing crop water productivity and altering root distribution of Chardonnay grapevine (Vitis vinifera L.) in a silt loam soil through direct root-zone deficit irrigation," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Williams, Larry E. & Levin, Alexander D. & Fidelibus, Matthew W., 2022. "Crop coefficients (Kc) developed from canopy shaded area in California vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    5. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    6. Chen, Rui & Chang, Hongda & Wang, Zhenhua & Lin, Haixia, 2023. "Determining organic-inorganic fertilizer application threshold to maximize the yield and quality of drip-irrigated grapes in an extremely arid area of Xinjiang, China," Agricultural Water Management, Elsevier, vol. 276(C).
    7. Ruifeng Sun & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Jiachang Guo, 2023. "Responses of the Leaf Water Physiology and Yield of Grapevine via Different Irrigation Strategies in Extremely Arid Areas," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    8. Fraga, Helder & Santos, João A., 2018. "Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal," Agricultural Systems, Elsevier, vol. 164(C), pages 107-115.
    9. Qi, Wei & Zhang, Zhanyu & Wang, Ce & Huang, Mingyi, 2021. "Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    10. Inês L. Cabral & Anabela Carneiro & Tiago Nogueira & Jorge Queiroz, 2021. "Regulated Deficit Irrigation and Its Effects on Yield and Quality of Vitis vinifera L., Touriga Francesa in a Hot Climate Area (Douro Region, Portugal)," Agriculture, MDPI, vol. 11(8), pages 1-16, August.
    11. Pérez-Álvarez, E.P. & Intrigliolo Molina, D.S. & Vivaldi, G.A. & García-Esparza, M.J. & Lizama, V. & Álvarez, I., 2021. "Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition," Agricultural Water Management, Elsevier, vol. 248(C).
    12. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    13. Douglas K. Bardsley & Annette M. Bardsley & Marco Conedera, 2023. "The dispersion of climate change impacts from viticulture in Ticino, Switzerland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-25, March.
    14. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    15. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    16. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    17. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    19. Pisciotta, Antonino & Di Lorenzo, Rosario & Santalucia, Gioacchino & Barbagallo, Maria Gabriella, 2018. "Response of grapevine (Cabernet Sauvignon cv) to above ground and subsurface drip irrigation under arid conditions," Agricultural Water Management, Elsevier, vol. 197(C), pages 122-131.
    20. Naulleau, Audrey & Gary, Christian & Prévot, Laurent & Vinatier, Fabrice & Hossard, Laure, 2022. "How can winegrowers adapt to climate change? A participatory modeling approach in southern France," Agricultural Systems, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419312892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.