IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i6p893-904.html
   My bibliography  Save this article

Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation

Author

Listed:
  • Siyal, A.A.
  • Skaggs, T.H.

Abstract

Sub-surface irrigation with porous clay pipe can be an efficient, water saving method of irrigation for many less developed arid and semi-arid regions. Maximizing the efficiency of clay pipe irrigation requires guidelines and criteria for system design and operation. In this study, experimental and simulated (with HYDRUS (2D/3D)) soil wetting patterns were investigated for sub-surface pipe systems operating at different water pressures. Predictions of the soil water content made with HYDRUS were found to be in good agreement (R2=0.98) with the observed data. Additional simulations with HYDRUS were used to study the effects of various design parameters on soil wetting. Increasing the system pressure increased the size of the wetted zone. The installation depth affects the recommended lateral spacing as well as the amount of evaporative water loss. For a given water application, the potential rate of surface evaporation affected the shape of the wetted region only minimally. Soil texture, due to its connection to soil hydraulic conductivity and water retention, has a larger impact on the wetting geometry. In general, greater horizontal spreading occurs in fine texture soils, or in the case of layered soils, in the finer textured layers.

Suggested Citation

  • Siyal, A.A. & Skaggs, T.H., 2009. "Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation," Agricultural Water Management, Elsevier, vol. 96(6), pages 893-904, June.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:6:p:893-904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00314-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    2. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping, 2006. "Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain," Agricultural Water Management, Elsevier, vol. 79(3), pages 248-264, February.
    3. Singh, D.K. & Rajput, T.B.S. & Singh, D.K. & Sikarwar, H.S. & Sahoo, R.N. & Ahmad, T., 2006. "Simulation of soil wetting pattern with subsurface drip irrigation from line source," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 130-134, May.
    4. Batchelor, Charles & Lovell, Christopher & Murata, Monica, 1996. "Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens," Agricultural Water Management, Elsevier, vol. 32(1), pages 37-48, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:agiwat:v:192:y:2017:i:c:p:244-256 is not listed on IDEAS
    2. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    3. repec:eee:agiwat:v:193:y:2017:i:c:p:174-190 is not listed on IDEAS
    4. Zhang, Qingtao & Wang, Shiping & Li, Li & Inoue, Mitsuhiro & Xiang, Jiao & Qiu, Guoyu & Jin, Wenbiao, 2014. "Effects of mulching and sub-surface irrigation on vine growth, berry sugar content and water use of grapevines," Agricultural Water Management, Elsevier, vol. 143(C), pages 1-8.
    5. Siyal, Altaf A. & Bristow, Keith L. & Šimůnek, Jirka, 2012. "Minimizing nitrogen leaching from furrow irrigation through novel fertilizer placement and soil surface management strategies," Agricultural Water Management, Elsevier, vol. 115(C), pages 242-251.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:6:p:893-904. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.