IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v224y2019ic4.html
   My bibliography  Save this article

Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation

Author

Listed:
  • Wang, JiaJia
  • Long, HuaiYu
  • Huang, YuanFang
  • Wang, XiangLing
  • Cai, Bin
  • Liu, Wei

Abstract

The pressure of the water supply is controlled to a negative value relying on soil matric suction and is called negative‐pressure irrigation (NPI), a subsurface irrigation method used to improve water use efficiency; however, the impacts of initial soil water conditions and emitter hydraulic conductivity on water movement under NPI remain unknown. To study the effects of irrigation management parameters on water movement under NPI, 300 scenarios using different soil textures, initial soil matric potentials, emitter hydraulic conductivities, negative pressure inside emitter and time were simulated using the Hydrus-2D software package. The effects of these variables on water movement under NPI were analyzed following the simulations, and a empirical model was created to quantify the cumulative water supply based on initial soil matric potential, emitter hydraulic conductivity, negative pressure inside emitter, and time. The results showed that the cumulative water supply increased as the emitter hydraulic conductivity increased or initial soil matric potential decreased. The relationships between the cumulative water supply and both the hydraulic conductivity of the emitter wall and the absolute value of the initial soil matric potential were logarithmic. Cumulative water supply had exponential and linear relationships with the absolute value of the negative pressure inside emitter and time, respectively. The empirical model created to quantify the cumulative water supply under NPI yielded estimations that were in good agreement with the measured values. Therefore, this model can be applied to calculate water supply under NPI, providing a smiple and reliable tool for future NPI applications and management.

Suggested Citation

  • Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:224:y:2019:i:c:4
    DOI: 10.1016/j.agwat.2019.105743
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419302033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    2. Li, Yinkun & Wang, Lichun & Xue, Xuzhang & Guo, Wenzhong & Xu, Fan & Li, Youli & Sun, Weituo & Chen, Fei, 2017. "Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain," Agricultural Water Management, Elsevier, vol. 184(C), pages 1-8.
    3. Qi, Zhijuan & Feng, Hao & Zhao, Ying & Zhang, Tibin & Yang, Aizheng & Zhang, Zhongxue, 2018. "Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 219-231.
    4. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    5. Zheng, Jianhua & Huang, Guanhua & Jia, Dongdong & Wang, Jun & Mota, Mariana & Pereira, Luis S. & Huang, Quanzhong & Xu, Xu & Liu, Haijun, 2013. "Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 129(C), pages 181-193.
    6. Siyal, A.A. & van Genuchten, M. Th. & Skaggs, T.H., 2013. "Solute transport in a loamy soil under subsurface porous clay pipe irrigation," Agricultural Water Management, Elsevier, vol. 121(C), pages 73-80.
    7. Siyal, A.A. & Skaggs, T.H., 2009. "Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation," Agricultural Water Management, Elsevier, vol. 96(6), pages 893-904, June.
    8. Abu-Zreig, Majed M. & Abe, Yukuo & Isoda, Hiroko, 2006. "The auto-regulative capability of pitcher irrigation system," Agricultural Water Management, Elsevier, vol. 85(3), pages 272-278, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    2. Qi, Wei & Zhang, Zhanyu & Wang, Ce & Huang, Mingyi, 2021. "Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation," Agricultural Water Management, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    2. Cai, Yaohui & Yao, Chunping & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Du, Yichao, 2021. "Effectiveness of a subsurface irrigation system with ceramic emitters under low-pressure conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Qi, Wei & Zhang, Zhanyu & Wang, Ce & Huang, Mingyi, 2021. "Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    4. Nazari, Ehsan & Besharat, Sina & Zeinalzadeh, Kamran & Mohammadi, Adel, 2021. "Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    6. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    7. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    8. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    9. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Yang, Pingguo & Bian, Yun & Long, HuaiYu & Drohan, Patrick J., 2020. "Comparison of emitters of ceramic tube and polyvinyl formal under negative pressure irrigation on soil water use efficiency and nutrient uptake of crown daisy," Agricultural Water Management, Elsevier, vol. 228(C).
    11. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    12. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    13. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    14. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    15. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    16. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.
    17. Contreras, J.I. & Alonso, F. & Cánovas, G. & Baeza, R., 2017. "Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects," Agricultural Water Management, Elsevier, vol. 183(C), pages 26-34.
    18. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    19. Sun, Libo & Chang, Xiaomin & Yu, Xinxiao & Jia, Guodong & Chen, Lihua & Wang, Yusong & Liu, Ziqiang, 2021. "Effect of freeze-thaw processes on soil water transport of farmland in a semi-arid area," Agricultural Water Management, Elsevier, vol. 252(C).
    20. Feuerbacher, Arndt & Laub, Moritz & Högy, Petra & Lippert, Christian & Pataczek, Lisa & Schindele, Stephan & Wieck, Christine & Zikeli, Sabine, 2021. "An analytical framework to estimate the economics and adoption potential of dual land-use systems: The case of agrivoltaics," Agricultural Systems, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:224:y:2019:i:c:4. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.