IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i5p566-d1607046.html
   My bibliography  Save this article

The Characteristics and Driving Factors of Soil Salinisation in the Irrigated Area on the Southern Bank of the Yellow River in Inner Mongolia: A Assessment of the Donghaixin Irrigation District

Author

Listed:
  • Ziyuan Qin

    (Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Hohhot 010020, China)

  • Tangzhe Nie

    (School of Water Conservancy and Electric Power, Heilongjiang University, Harbin 150080, China)

  • Ying Wang

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China)

  • Hexiang Zheng

    (Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Hohhot 010020, China)

  • Changfu Tong

    (Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Hohhot 010020, China)

  • Jun Wang

    (Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Hohhot 010020, China)

  • Rongyang Wang

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

  • Hongfei Hou

    (Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Hohhot 010020, China)

Abstract

Soil salinisation is a critical problem in northern China’s arid and semi-arid irrigated regions, posing a substantial impediment to the sustainable advancement of agriculture in these areas. This research utilises the Donghaixin Irrigation District, located on the southern bank of the Yellow River in Inner Mongolia, as a case study. This study examines the spatial distribution and determinants of soil salinisation through macro-environmental variables and micro-ion composition, integrating regression models and groundwater ion characteristics to elucidate the patterns and causes of soil salinisation systematically. The findings demonstrate that soil salinisation in the study region displays notable spatial clustering, with surface water-irrigated regions exhibiting greater salinisation levels than groundwater-irrigated areas. More than 80% of the land exhibits moderate salinity, predominantly characterised by the ions Cl − , HCO 3 − , and SO 4 2− . The hierarchy of ion concentration variation with escalating soil salinity is as follows: Na + > K + > SO 4 2− > Cl − > Mg 2+ > HCO 3 − + CO 3 2− > Ca 2+ . The susceptibility of ions to soil salinisation is ordered as follows: Ca 2+ > Na + > HCO 3 − + CO 3 2− > Mg 2+ > K + > Cl − > SO 4 2− . In contrast to the ordinary least squares (OLS) model, the geographic weighted regression (GWR) model more effectively elucidates the geographical variability of salinity, evidenced by an adjusted R 2 of 0.68, particularly in high-salinity regions, where it more precisely captures the trend of observed values. Ecological driving elements such as organic matter (OM), pH, groundwater depth (GD), total dissolved solids (TDS), digital elevation model (DEM), normalised difference vegetation index (NDVI), soil moisture (SM), and potential evapotranspiration (PET) govern the distribution of salinisation. In contrast, anthropogenic activities affect the extent of salinisation variation. Piper’s trilinear diagram demonstrates that Na cations mainly characterise groundwater and soil water chemistry. In areas irrigated by surface water, the concentration of SO 4 2− is substantially elevated and significantly affected by agricultural practises; conversely, in groundwater-irrigated regions, Cl − and HCO 3 − are more concentrated, primarily driven by evaporation and ion exchange mechanisms.

Suggested Citation

  • Ziyuan Qin & Tangzhe Nie & Ying Wang & Hexiang Zheng & Changfu Tong & Jun Wang & Rongyang Wang & Hongfei Hou, 2025. "The Characteristics and Driving Factors of Soil Salinisation in the Irrigated Area on the Southern Bank of the Yellow River in Inner Mongolia: A Assessment of the Donghaixin Irrigation District," Agriculture, MDPI, vol. 15(5), pages 1-22, March.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:5:p:566-:d:1607046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/5/566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/5/566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gul, Nazar & Mangrio, Munir Ahmed & Shaikh, Irfan Ahmed & Siyal, Abdul Ghafoor & Taie Semiromi, Majid, 2024. "Quantifying the impacts of varying groundwater table depths on cotton evapotranspiration, yield, water use efficiency, and root zone salinity using lysimeters," Agricultural Water Management, Elsevier, vol. 301(C).
    2. Xurun Li & Zhao Li & Weizhang Fu & Fadong Li, 2024. "The Influence of Shallow Groundwater on the Physicochemical Properties of Field Soil, Crop Yield, and Groundwater," Agriculture, MDPI, vol. 14(3), pages 1-22, February.
    3. Yingxuan Ma & Nigara Tashpolat, 2023. "Current Status and Development Trend of Soil Salinity Monitoring Research in China," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
    4. Qi, Zhijuan & Feng, Hao & Zhao, Ying & Zhang, Tibin & Yang, Aizheng & Zhang, Zhongxue, 2018. "Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 219-231.
    5. Peiyue Li & Hui Qian & Jianhua Wu, 2018. "Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(3), pages 337-353, May.
    6. Yu, Ruihong & Liu, Tingxi & Xu, Youpeng & Zhu, Chao & Zhang, Qing & Qu, Zhongyi & Liu, Xiaomin & Li, Changyou, 2010. "Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China," Agricultural Water Management, Elsevier, vol. 97(12), pages 1952-1960, November.
    7. Aadhityaa Mohanavelu & Sujay Raghavendra Naganna & Nadhir Al-Ansari, 2021. "Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies," Agriculture, MDPI, vol. 11(10), pages 1-17, October.
    8. Guo, Shuhao & Li, Xianyue & Šimůnek, Jirí & Wang, Jun & Zhang, Yuehong & Wang, Ya'nan & Zhen, Zhixin & He, Rui, 2024. "Experimental and numerical evaluation of soil water and salt dynamics in a corn field with shallow saline groundwater and crop-season drip and autumn post-harvest irrigations," Agricultural Water Management, Elsevier, vol. 305(C).
    9. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Huang, Yajie & Ma, Yibing & Zhang, Shiwen & Li, Zhen & Huang, Yuanfang, 2021. "Optimum allocation of salt discharge areas in land consolidation for irrigation districts by SahysMod," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Yannan Liu & Yan Zhu & Wei Mao & Guanfang Sun & Xudong Han & Jingwei Wu & Jinzhong Yang, 2022. "Development and Application of a Water and Salt Balance Model for Well-Canal Conjunctive Irrigation in Semiarid Areas with Shallow Water Tables," Agriculture, MDPI, vol. 12(3), pages 1-25, March.
    4. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Shuoyang Li & Guiyu Yang & Cui Chang & Hao Wang & Hongling Zhang & Na Zhang & Zhigong Peng & Yaomingqi Song, 2024. "Remote Sensing Inversion of Salinization Degree Distribution and Analysis of Its Influencing Factors in an Arid Irrigated District," Land, MDPI, vol. 13(4), pages 1-18, March.
    6. Li, Wenhao & Gao, Shuanglong & Pei, Dongjie & Wen, Yue & Mu, Xiaoguo & Liu, Mengjie & Wang, Zhenhua, 2025. "Spatio-temporal evolution and simulation of soil salinization in typical oasis water-saving irrigation area based on long series data," Agricultural Water Management, Elsevier, vol. 307(C).
    7. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    8. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Du, Ruiqi & Chen, Junying & Zhang, Zhitao & Chen, Yinwen & He, Yujie & Yin, Haoyuan, 2022. "Simultaneous estimation of surface soil moisture and salinity during irrigation with the moisture-salinity-dependent spectral response model," Agricultural Water Management, Elsevier, vol. 265(C).
    11. Singh, Atinderpal & Bista, Prakriti & Deb, Sanjit K. & Ghimire, Rajan, 2025. "Simulating cover crops impacts on soil water and nitrogen dynamics and silage yield in the semi-arid Southwestern United States," Agricultural Water Management, Elsevier, vol. 307(C).
    12. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    13. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    14. Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    15. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    16. Fu, Xiaoke & Wu, Xiao & Wang, Haoyu & Chen, Yiwen & Wang, Rui & Wang, Yaqi, 2023. "Effects of fertigation with carboxymethyl cellulose potassium on water conservation, salt suppression, and maize growth in salt-affected soil," Agricultural Water Management, Elsevier, vol. 287(C).
    17. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    18. Xiangping Wang & Yunpeng Sun & Yuxing Liu & Xiaolin Li & Qiancheng Gao & Jingsong Yang & Wenping Xie & Rongjiang Yao, 2024. "Effects of Environmentally Friendly Materials on Saline Soil Improvement and Sunflower Yields in the Hetao Irrigation Region, China," Land, MDPI, vol. 13(6), pages 1-13, June.
    19. Gerçek, Sinan & Demirkaya, Mustafa, 2021. "Impact of colored water pillows on yield and water productivity of pepper under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 250(C).
    20. Yuhui Yang & Dongwei Li & Weixiong Huang & Xinguo Zhou & Zhaoyang Li & Xiaomei Dong & Xingpeng Wang, 2022. "Effects of Subsurface Drainage on Soil Salinity and Groundwater Table in Drip Irrigated Cotton Fields in Oasis Regions of Tarim Basin," Agriculture, MDPI, vol. 12(12), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:5:p:566-:d:1607046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.