IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v201y2018icp219-231.html
   My bibliography  Save this article

Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China

Author

Listed:
  • Qi, Zhijuan
  • Feng, Hao
  • Zhao, Ying
  • Zhang, Tibin
  • Yang, Aizheng
  • Zhang, Zhongxue

Abstract

Hetao Irrigation District, a large irrigation district in arid area, northwest China, is suffering from the decreasing water supply and increasing soil salinization. Mulched drip irrigation is widely used for agricultural production in arid area, and tillage management affects soil environment variously. This study aimed to explore combined effects of tillage and mulching modes on soil water and salt transfer under drip irrigation. The experiment included 4 treatments: ridge tillage with full film mulching (RFM), ridge tillage with partial film mulching (RPM), flat tillage with full film mulching (FFM) and flat tillage with partial film mulching (FPM). The results showed that RFM increased soil moisture in root zone (0–40 cm). Soil salt was pushed to the edge of soil wetting front and, RFM and FFM reduced salt accumulation in 0–70 layer significantly than RPM and FPM, indicating that full film mulching could retard the upward movement of soil salt more effectively. Furthermore, the performance of HYDRUS-2D was calibrated and evaluated by comparing the simulated values with observed values, and further verified model by another year dataset, to simulate the spatial distributions of soil water and salt in the two directions under mulched drip irrigation with different irrigation quantity. The simulation showed that the wetted region was expanded to the middle position of the film and the uniformity of irrigation increased with the increasing irrigation amount. In addition, the increasing of assumed irrigation amount induced soil desalination and make soil salinity spatial movement meet a discipline that the direction parallel to the drip line was lower than that perpendicular to the line at the same distance. In all, RFM could be adopted for optimizing soil water-salt regulation under drip irrigation in Hetao Irrigation District, and the model presented here is an efficient approach for investigating the regulation mechanisms of root-zone water and salt dynamics under mulching and/or tillage.

Suggested Citation

  • Qi, Zhijuan & Feng, Hao & Zhao, Ying & Zhang, Tibin & Yang, Aizheng & Zhang, Zhongxue, 2018. "Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 219-231.
  • Handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:219-231
    DOI: 10.1016/j.agwat.2017.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417304249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin, 2015. "Effects of different drip irrigation regimes on saline–sodic soil nutrients and cotton yield in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 153(C), pages 1-8.
    2. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    3. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
    4. Chen, Li-Juan & Feng, Qi & Li, Feng-Rui & Li, Chang-Sheng, 2014. "A bidirectional model for simulating soil water flow and salt transport under mulched drip irrigation with saline water," Agricultural Water Management, Elsevier, vol. 146(C), pages 24-33.
    5. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    6. Patel, Neelam & Rajput, T.B.S., 2008. "Dynamics and modeling of soil water under subsurface drip irrigated onion," Agricultural Water Management, Elsevier, vol. 95(12), pages 1335-1349, December.
    7. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Braunack, Michael V. & Filipović, Vilim & Adhikari, Raju & Freischmidt, George & Johnston, Priscilla & Casey, Phil S. & Wang, Yusong & Šimůnek, Jiří & Filipović, Lana & Bristow, Keith L., 2021. "Evaluation of a Sprayable Biodegradable Polymer Membrane (SBPM) Technology for soil water conservation in tomato and watermelon production systems," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Fu, Xiaoke & Wu, Xiao & Wang, Haoyu & Chen, Yiwen & Wang, Rui & Wang, Yaqi, 2023. "Effects of fertigation with carboxymethyl cellulose potassium on water conservation, salt suppression, and maize growth in salt-affected soil," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Quan, Hao & Wu, Lihong & Ding, Dianyuan & Yang, Zhenting & Wang, Naijiang & Chen, Guangjie & Li, Cheng & Dong, Qin'ge & Feng, Hao & Zhang, Tibin & Siddique, Kadambot H.M., 2022. "Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China," Agricultural Water Management, Elsevier, vol. 265(C).
    4. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    5. Ruofan Li & Juanjuan Ma & Xihuan Sun & Xianghong Guo & Lijian Zheng, 2021. "Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns," Agriculture, MDPI, vol. 11(11), pages 1-20, November.
    6. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    7. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    8. Peirong Lu & Yaxin Liu & Yujie Yang & Yu Zhu & Zhonghua Jia, 2024. "Evaluating Soil Water–Salt Dynamics under Brackish Water Drip Irrigation in Greenhouses Subjected to Localized Topsoil Compaction," Agriculture, MDPI, vol. 14(3), pages 1-22, March.
    9. Sun, Libo & Chang, Xiaomin & Yu, Xinxiao & Jia, Guodong & Chen, Lihua & Wang, Yusong & Liu, Ziqiang, 2021. "Effect of freeze-thaw processes on soil water transport of farmland in a semi-arid area," Agricultural Water Management, Elsevier, vol. 252(C).
    10. Li Xu & Hongru Du & Xiaolei Zhang, 2019. "Spatial Distribution Characteristics of Soil Salinity and Moisture and Its Influence on Agricultural Irrigation in the Ili River Valley, China," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    11. Guoshuai Wang & Bing Xu & Pengcheng Tang & Haibin Shi & Delong Tian & Chen Zhang & Jie Ren & Zekun Li, 2022. "Modeling and Evaluating Soil Salt and Water Transport in a Cultivated Land–Wasteland–Lake System of Hetao, Yellow River Basin’s Upper Reaches," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    12. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    13. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    14. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    15. Yaqi Wang & Ming Gao & Heting Chen & Yiwen Chen & Lei Wang & Rui Wang, 2023. "Fertigation and Carboxymethyl Cellulose Applications Enhance Water-Use Efficiency, Improving Soil Available Nutrients and Maize Yield in Salt-Affected Soil," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    16. Weiying Feng & Jiayue Gao & Rui Cen & Fang Yang & Zhongqi He & Jin Wu & Qingfeng Miao & Haiqing Liao, 2020. "Effects of Polyacrylamide-Based Super Absorbent Polymer and Corn Straw Biochar on the Arid and Semi-Arid Salinized Soil," Agriculture, MDPI, vol. 10(11), pages 1-17, November.
    17. Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    18. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    20. Gerçek, Sinan & Demirkaya, Mustafa, 2021. "Impact of colored water pillows on yield and water productivity of pepper under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 250(C).
    21. Guo, Leilei & Wang, Zaimin & Šimůnek, Jirka & He, Yujiang & Muhamma, Rizwan, 2023. "Optimizing the strategies of mulched brackish drip irrigation under a shallow water table in Xinjiang, China, using HYDRUS-3D," Agricultural Water Management, Elsevier, vol. 283(C).
    22. Yerli, Caner & Sahin, Ustun & Ors, Selda & Kiziloglu, Fatih Mehmet, 2023. "Improvement of water and crop productivity of silage maize by irrigation with different levels of recycled wastewater under conventional and zero tillage conditions," Agricultural Water Management, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    3. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    4. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    5. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    6. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    8. Ravikumar, V. & Vijayakumar, G. & Simunek, J. & Chellamuthu, S. & Santhi, R. & Appavu, K., 2011. "Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1431-1440, July.
    9. Xiong, Lvyang & Jiang, Yao & Li, Xinyi & Ren, Dongyang & Huang, Guanhua, 2023. "Long-term regional groundwater responses and their ecological impacts under agricultural water saving in an arid irrigation district, upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Saglam, Mustafa & Sintim, Henry Y. & Bary, Andy I. & Miles, Carol A. & Ghimire, Shuresh & Inglis, Debra A. & Flury, Markus, 2017. "Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics," Agricultural Water Management, Elsevier, vol. 193(C), pages 240-250.
    11. Wang, Xiangping & Liu, Guangming & Yang, Jingsong & Huang, Guanhua & Yao, Rongjiang, 2017. "Evaluating the effects of irrigation water salinity on water movement, crop yield and water use efficiency by means of a coupled hydrologic/crop growth model," Agricultural Water Management, Elsevier, vol. 185(C), pages 13-26.
    12. Dong, Qin’ge & Yang, Yuchen & Zhang, Tinbin & Zhou, Lifeng & He, Jianqiang & Chau, Henry Wai & Zou, Yufeng & Feng, Hao, 2018. "Impacts of ridge with plastic mulch-furrow irrigation on soil salinity, spring maize yield and water use efficiency in an arid saline area," Agricultural Water Management, Elsevier, vol. 201(C), pages 268-277.
    13. Li, Yinkun & Wang, Lichun & Xue, Xuzhang & Guo, Wenzhong & Xu, Fan & Li, Youli & Sun, Weituo & Chen, Fei, 2017. "Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain," Agricultural Water Management, Elsevier, vol. 184(C), pages 1-8.
    14. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    15. Egea, Gregorio & Diaz-Espejo, Antonio & Fernández, José E., 2016. "Soil moisture dynamics in a hedgerow olive orchard under well-watered and deficit irrigation regimes: Assessment, prediction and scenario analysis," Agricultural Water Management, Elsevier, vol. 164(P2), pages 197-211.
    16. Quan, Hao & Wu, Lihong & Ding, Dianyuan & Yang, Zhenting & Wang, Naijiang & Chen, Guangjie & Li, Cheng & Dong, Qin'ge & Feng, Hao & Zhang, Tibin & Siddique, Kadambot H.M., 2022. "Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China," Agricultural Water Management, Elsevier, vol. 265(C).
    17. Galleguillos, Mauricio & Jacob, Frédéric & Prévot, Laurent & Faúndez, Carlos & Bsaibes, Aline, 2017. "Estimation of actual evapotranspiration over a rainfed vineyard using a 1-D water transfer model: A case study within a Mediterranean watershed," Agricultural Water Management, Elsevier, vol. 184(C), pages 67-76.
    18. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    19. Shouse, Peter J. & Ayars, James E. & Simunek, Jirí, 2011. "Simulating root water uptake from a shallow saline groundwater resource," Agricultural Water Management, Elsevier, vol. 98(5), pages 784-790, March.
    20. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:219-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.