IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i11p1547-1559.html
   My bibliography  Save this article

Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation

Author

Listed:
  • Mubarak, Ibrahim
  • Mailhol, Jean Claude
  • Angulo-Jaramillo, Rafael
  • Bouarfa, Sami
  • Ruelle, Pierre

Abstract

The effect of changes in the hydraulic properties of a loamy topsoil on water transfer under daily drip irrigation was studied over a cropping cycle. Soil water contents were measured continuously with neutron probes and capacitance sensors placed in access tubes (EnviroSMART) and were compared to predications made by the Hydrus-2D model. Three different sets of hydraulic parameters measured before and after irrigation started, were used. Our results demonstrated that, based on the assumptions used in this study, the accuracy of the Hydrus predictions is good. Graphical and statistical comparisons of simulated and measured soil water contents and consequently the total water storage revealed a similar trend throughout the monitoring period for the all three different sets of parameters. The soil hydraulic properties determined after irrigation started were found to be much more representative of the majority of the irrigation season, as confirmed by the accuracy of the simulation results with high values of the index of agreement and with values of RMSE similar in magnitude to the error associated with field measurements (0.020cm3cm-3). The highest RMSE values (about 0.04cm3cm-3) were found when the model used input soil parameters measured before irrigation started. Generally, changes in topsoil hydraulic properties over time had no significant effect on soil moisture distribution in our agro-pedo-climatic context. One possible explanation is that daily water application was conducted at the same time as maximal root water uptake. This meant the soil did not need to store total daily crop water requirements and consequently that the water redistribution phase represented a very short stage in the irrigation cycle. It is probable that irrigating in the daytime when crop evapotranspiration is highest could prevent the effects of a temporal change and other problems connected with the soil. Moreover, water will be always available for the crop. Further experiments are needed to justify the results and to study the effects of low frequency drip irrigation on soil hydraulic characterization and consequently on soil water transfer in order to improve irrigation scheduling practices.

Suggested Citation

  • Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:11:p:1547-1559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00173-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michelakis, N. & Vougioucalou, E. & Clapaki, G., 1993. "Water use, wetted soil volume, root distribution and yield of avocado under drip irrigation," Agricultural Water Management, Elsevier, vol. 24(2), pages 119-131, October.
    2. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    3. Hanson, Blaine R. & Simunek, Jirka & Hopmans, Jan W., 2006. "Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 102-113, November.
    4. Mailhol, Jean Claude & Olufayo, Ayorinde A. & Ruelle, Pierre, 1997. "Sorghum and sunflower evapotranspiration and yield from simulated leaf area index," Agricultural Water Management, Elsevier, vol. 35(1-2), pages 167-182, December.
    5. Patel, Neelam & Rajput, T.B.S., 2008. "Dynamics and modeling of soil water under subsurface drip irrigated onion," Agricultural Water Management, Elsevier, vol. 95(12), pages 1335-1349, December.
    6. repec:eee:ecomod:v:220:y:2009:i:4:p:505-521 is not listed on IDEAS
    7. Khaledian, M.R. & Mailhol, J.C. & Ruelle, P. & Rosique, P., 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 96(5), pages 757-770, May.
    8. M.R. Khaledian & J.C. Mailhol & P. Ruelle & J.L. Rosique, 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Post-Print hal-00454543, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albasha, Rami & Mailhol, Jean-Claude & Cheviron, Bruno, 2015. "Compensatory uptake functions in empirical macroscopic root water uptake models – Experimental and numerical analysis," Agricultural Water Management, Elsevier, vol. 155(C), pages 22-39.
    2. Mailhol, Jean Claude & Ruelle, Pierre & Walser, Sabine & Schütze, Niels & Dejean, Cyril, 2011. "Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D," Agricultural Water Management, Elsevier, vol. 98(6), pages 1033-1044, April.
    3. repec:eee:agiwat:v:188:y:2017:i:c:p:12-20 is not listed on IDEAS
    4. Stamatios Elmaloglou & Konstantinos Soulis & Nicholas Dercas, 2013. "Simulation of Soil Water Dynamics Under Surface Drip Irrigation from Equidistant Line Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4131-4148, September.
    5. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    6. repec:eee:agiwat:v:193:y:2017:i:c:p:174-190 is not listed on IDEAS
    7. Barakat, Mohammad & Cheviron, Bruno & Angulo-Jaramillo, Rafael, 2016. "Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review," Agricultural Water Management, Elsevier, vol. 178(C), pages 225-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:11:p:1547-1559. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.