IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v153y2015icp1-8.html
   My bibliography  Save this article

Effects of different drip irrigation regimes on saline–sodic soil nutrients and cotton yield in an arid region of Northwest China

Author

Listed:
  • Wang, Ruoshui
  • Kang, Yaohu
  • Wan, Shuqin

Abstract

A field experiment was conducted on a saline wasteland in Xinjiang, Northwest China, during 2008–2010 to evaluate the nutrient behavior and cotton yield during reclamation, applied by different drip irrigation regimes. The experiment included five treatments in which the soil matric potential (SMP) thresholds at 20cm depth were controlled at −5, −10, −15, −20 and −25kPa. The results indicated that both soil salinity and sodicity declined significantly at 0–40cm depth and greater reductions were achieved at higher SMP thresholds (−5 and −10kPa) than in other treatments. The distributions in soil inorganic nitrogen (N) and available phosphorus (P) and potassium (K) in the soil profile were mainly influenced by the point-source characteristic of drip irrigation, drip irrigation regime and fertilization mode. With the reclamation of both soil chemical and physical properties, there were dramatic increases in soil N, P and K concentration by the end of 2010. The soil nutrient concentrations in N, P and K were all proportional to the SMP thresholds, as higher SMP could result in greater reductions in soil salinity and sodicity. Since crop growth became more vigorous during reclamation, there was also a considerable increase (9.7–31.9%) in soil organic carbon by the end of 2010, and the concentrations were also proportional to SMP thresholds. The highest cotton yield was obtained in S1 (−5kPa) treatment for both 2009 (2.87Mgha−1) and 2010 (3.60Mgha−1). Additionally, the soil C:N ratios were inversely proportional to the SMP thresholds in 2009 and 2010. Considering the soil reclamation efficiency, soil nutrient stocks and cotton yield, SMP thresholds of −5 and −10kPa could be used as effective measures to trigger irrigation in the first 3 years of saline–sodic soil reclamation in Xinjiang, Northwest China.

Suggested Citation

  • Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin, 2015. "Effects of different drip irrigation regimes on saline–sodic soil nutrients and cotton yield in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 153(C), pages 1-8.
  • Handle: RePEc:eee:agiwat:v:153:y:2015:i:c:p:1-8
    DOI: 10.1016/j.agwat.2015.01.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415000499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.01.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Zhang, Tibin, 2012. "Soil salinity management with drip irrigation and its effects on soil hydraulic properties in north China coastal saline soils," Agricultural Water Management, Elsevier, vol. 115(C), pages 10-19.
    2. Chen, Ming & Kang, Yaohu & Wan, Shuqin & Liu, Shi-ping, 2009. "Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)," Agricultural Water Management, Elsevier, vol. 96(12), pages 1766-1772, December.
    3. Chen, Weiping & Hou, Zhenan & Wu, Laosheng & Liang, Yongchao & Wei, Changzhou, 2010. "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China," Agricultural Water Management, Elsevier, vol. 97(12), pages 2001-2008, November.
    4. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    5. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Li, Yinkun & Wang, Lichun & Xue, Xuzhang & Guo, Wenzhong & Xu, Fan & Li, Youli & Sun, Weituo & Chen, Fei, 2017. "Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain," Agricultural Water Management, Elsevier, vol. 184(C), pages 1-8.
    3. Wang, Ruoshui & Wan, Shuqin & Sun, Jiaxia & Xiao, Huijie, 2018. "Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation," Agricultural Water Management, Elsevier, vol. 209(C), pages 20-31.
    4. Qi, Zhijuan & Feng, Hao & Zhao, Ying & Zhang, Tibin & Yang, Aizheng & Zhang, Zhongxue, 2018. "Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 219-231.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Beibei & Liang, Chaofan & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Yang, Lu & Duan, Manli & Wang, Xingpeng, 2022. "Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    3. Wang, Ruoshui & Wan, Shuqin & Kang, Yaohu & Dou, Chaoyin, 2014. "Assessment of secondary soil salinity prevention and economic benefit under different drip line placement and irrigation regime in northwest China," Agricultural Water Management, Elsevier, vol. 131(C), pages 41-49.
    4. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin, 2013. "Effects of an imbedded gravel–sand layer on reclamation of coastal saline soils under drip irrigation and on plant growth," Agricultural Water Management, Elsevier, vol. 123(C), pages 12-19.
    5. Zhang, Chen & Li, Xiaobin & Kang, Yaohu & Wang, Xunming, 2019. "Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils," Agricultural Water Management, Elsevier, vol. 218(C), pages 8-16.
    6. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    7. Wang, Ruoshui & Wan, Shuqin & Sun, Jiaxia & Xiao, Huijie, 2018. "Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation," Agricultural Water Management, Elsevier, vol. 209(C), pages 20-31.
    8. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Chu, Linlin & Li, Xiaobin, 2015. "Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils," Agricultural Water Management, Elsevier, vol. 158(C), pages 99-111.
    9. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    10. Yongwei Liu & Zhenzhen Yang & Changxiong Zhu & Baogang Zhang & Hongna Li, 2023. "The Eco-Agricultural Industrial Chain: The Meaning, Content and Practices," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    11. Liang, Jiaping & Shi, Wenjuan & He, Zijian & Pang, Linna & Zhang, Yanchao, 2019. "Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 218(C), pages 48-59.
    12. Lin, Xiaomin & Wang, Zhen & Li, Jiusheng, 2022. "Spatial variability of salt content caused by nonuniform distribution of irrigation and soil properties in drip irrigation subunits with different lateral layouts under arid environments," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Jiang, Donglin & Ao, Chang & Bailey, Ryan T. & Zeng, Wenzhi & Huang, Jiesheng, 2022. "Simulation of water and salt transport in the Kaidu River Irrigation District using the modified SWAT-Salt," Agricultural Water Management, Elsevier, vol. 272(C).
    14. Xiuping Wang & Zhizhong Xue & Xuelin Lu & Yahui Liu & Guangming Liu & Zhe Wu, 2019. "Salt leaching of heavy coastal saline silty soil by controlling the soil matric potential," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(3), pages 132-137.
    15. Li, Xiaobin & Kang, Yaohu, 2020. "Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    16. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin & Guo, Liping, 2015. "Influence of mulches on urban vegetation construction in coastal saline land under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 158(C), pages 145-155.
    17. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Zhang, Tibin, 2012. "Soil salinity management with drip irrigation and its effects on soil hydraulic properties in north China coastal saline soils," Agricultural Water Management, Elsevier, vol. 115(C), pages 10-19.
    18. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    19. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    20. Dorta-Santos, María & Tejedor, Marisa & Jiménez, Concepción & Hernández-Moreno, Jose M. & Díaz, Francisco J., 2016. "“Using marginal quality water for an energy crop in arid regions: Effect of salinity and boron distribution patterns”," Agricultural Water Management, Elsevier, vol. 171(C), pages 142-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:153:y:2015:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.