IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v218y2019icp8-16.html
   My bibliography  Save this article

Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils

Author

Listed:
  • Zhang, Chen
  • Li, Xiaobin
  • Kang, Yaohu
  • Wang, Xunming

Abstract

Using of saline water is becoming an important approach to reclaim and utilize salt-affected soil for landscaping and agricultural purposes. A three-year field experiment was conducted in Hebei Province, North China to cultivate a perennial flower, Dianthus chinensis L., on two coastal saline soils of different textures, silt (27.79 dS·m−1) and sandy loam (27.33 dS·m−1), using the drip irrigation at five levels of water salinity (ECi = 0.8, 3.1, 4.7, 6.3 and 7.8 dS·m−1). Effect of water salinity on salt distribution in soil profile and plant growth and physiological response were investigated. The irrigation water salinity tolerance threshold of D. chinensis in terms of shoot dry weight was also evaluated. Results shown that, after three growing seasons, the highly saline soils reclaimed to < 8 dS·m−1 for silt soil and < 3 dS·m−1 for sandy loam soil under ECi < 7.8 dS·m−1. The soil salinity decreased with year and increased with increasing ECi. Better salt leaching effect occurred in sandy loam soil compared with silt soil. Plant height, clump diameter, and shoot dry weight as well as survival rate declined in response to increasing ECi, and survival rate of > 80% retained for all treatments in the third year. The decline of shoot K+ concentration, excessive accumulation of Na+, and concomitant reduction of K+/Na+ ratio were observed with increasing ECi. The irrigation water salinity thresholds of D. chinensis, aimed at biological production, are 3.17 dS·m−1 for silt soil and 1.62 dS·m−1 for sandy loam soil; for landscaping purpose, the corresponding values are 5.65 and 6.98 dS·m−1.

Suggested Citation

  • Zhang, Chen & Li, Xiaobin & Kang, Yaohu & Wang, Xunming, 2019. "Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils," Agricultural Water Management, Elsevier, vol. 218(C), pages 8-16.
  • Handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:8-16
    DOI: 10.1016/j.agwat.2019.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418311995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Letey, J. & Hoffman, G.J. & Hopmans, J.W. & Grattan, S.R. & Suarez, D. & Corwin, D.L. & Oster, J.D. & Wu, L. & Amrhein, C., 2011. "Evaluation of soil salinity leaching requirement guidelines," Agricultural Water Management, Elsevier, vol. 98(4), pages 502-506, February.
    2. Díaz, F.J. & Grattan, S.R. & Reyes, J.A. & de la Roza-Delgado, B. & Benes, S.E. & Jiménez, C. & Dorta, M. & Tejedor, M., 2018. "Using saline soil and marginal quality water to produce alfalfa in arid climates," Agricultural Water Management, Elsevier, vol. 199(C), pages 11-21.
    3. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Chu, Linlin & Li, Xiaobin, 2015. "Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils," Agricultural Water Management, Elsevier, vol. 158(C), pages 99-111.
    4. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Zhang, Tibin, 2012. "Soil salinity management with drip irrigation and its effects on soil hydraulic properties in north China coastal saline soils," Agricultural Water Management, Elsevier, vol. 115(C), pages 10-19.
    5. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    6. Wan, Shuqin & Kang, Yaohu & Wang, Dan & Liu, Shi-ping, 2010. "Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 98(1), pages 105-113, December.
    7. Li, Xiaobin & Kang, Yaohu & Wan, Shuqin & Chen, Xiulong & Liu, Shiping & Xu, Jiachong, 2016. "Response of a salt-sensitive plant to processes of soil reclamation in two saline–sodic, coastal soils using drip irrigation with saline water," Agricultural Water Management, Elsevier, vol. 164(P2), pages 223-234.
    8. Martina Flörke & Christof Schneider & Robert I. McDonald, 2018. "Water competition between cities and agriculture driven by climate change and urban growth," Nature Sustainability, Nature, vol. 1(1), pages 51-58, January.
    9. Chen, Ming & Kang, Yaohu & Wan, Shuqin & Liu, Shi-ping, 2009. "Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)," Agricultural Water Management, Elsevier, vol. 96(12), pages 1766-1772, December.
    10. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    11. Aragüés, R. & Medina, E.T. & Clavería, I. & Martínez-Cob, A. & Faci, J., 2014. "Regulated deficit irrigation, soil salinization and soil sodification in a table grape vineyard drip-irrigated with moderately saline waters," Agricultural Water Management, Elsevier, vol. 134(C), pages 84-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Gulom Bekmirzaev & Baghdad Ouddane & Jose Beltrao & Yoshiharu Fujii, 2020. "The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia tetragonioides," Agriculture, MDPI, vol. 10(6), pages 1-10, June.
    4. Feng, Di & Ning, Songrui & Sun, Xiaoan & Zhang, Jingmin & Zhu, Haiyan & Tang, Jingchun & Xu, Youxin, 2023. "Agricultural use of deserted saline land through an optimized drip irrigation system with mild salinized water," Agricultural Water Management, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin & Xu, Jiachong, 2019. "Effect of the micro-sprinkler irrigation method with treated effluent on soil physical and chemical properties in sea reclamation land," Agricultural Water Management, Elsevier, vol. 213(C), pages 222-230.
    2. Li, Xiaobin & Kang, Yaohu, 2020. "Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    4. Dong, Shide & Wang, Guangmei & Kang, Yaohu & Ma, Qian & Wan, Shuqin, 2022. "Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of Yellow River basin," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin, 2015. "Effects of different drip irrigation regimes on saline–sodic soil nutrients and cotton yield in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 153(C), pages 1-8.
    6. Wang, Ruoshui & Wan, Shuqin & Sun, Jiaxia & Xiao, Huijie, 2018. "Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation," Agricultural Water Management, Elsevier, vol. 209(C), pages 20-31.
    7. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    8. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Chu, Linlin & Li, Xiaobin, 2015. "Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils," Agricultural Water Management, Elsevier, vol. 158(C), pages 99-111.
    9. Yongwei Liu & Zhenzhen Yang & Changxiong Zhu & Baogang Zhang & Hongna Li, 2023. "The Eco-Agricultural Industrial Chain: The Meaning, Content and Practices," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    10. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    13. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    14. Zhangzhong, Lili & Yang, Peiling & Zhen, Wengang & Zhang, Xin & Wang, Caiyuan, 2019. "A kinetic model for the chemical clogging of drip irrigation system using saline water," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    15. Wang, Ruoshui & Wan, Shuqin & Kang, Yaohu & Dou, Chaoyin, 2014. "Assessment of secondary soil salinity prevention and economic benefit under different drip line placement and irrigation regime in northwest China," Agricultural Water Management, Elsevier, vol. 131(C), pages 41-49.
    16. Khaleghi, Moazam & Hassanpour, Farzad & Karandish, Fatemeh & Shahnazari, Ali, 2020. "Integrating partial root-zone drying and saline water irrigation to sustain sunflower production in freshwater-scarce regions," Agricultural Water Management, Elsevier, vol. 234(C).
    17. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin, 2013. "Effects of an imbedded gravel–sand layer on reclamation of coastal saline soils under drip irrigation and on plant growth," Agricultural Water Management, Elsevier, vol. 123(C), pages 12-19.
    18. Xiuping Wang & Zhizhong Xue & Xuelin Lu & Yahui Liu & Guangming Liu & Zhe Wu, 2019. "Salt leaching of heavy coastal saline silty soil by controlling the soil matric potential," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(3), pages 132-137.
    19. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin & Guo, Liping, 2015. "Influence of mulches on urban vegetation construction in coastal saline land under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 158(C), pages 145-155.
    20. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:8-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.