IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424006115.html
   My bibliography  Save this article

Spatio-temporal evolution and simulation of soil salinization in typical oasis water-saving irrigation area based on long series data

Author

Listed:
  • Li, Wenhao
  • Gao, Shuanglong
  • Pei, Dongjie
  • Wen, Yue
  • Mu, Xiaoguo
  • Liu, Mengjie
  • Wang, Zhenhua

Abstract

Salinization in irrigation areas is a global environmental challenge. The complexity of the natural environment increases the uncertainty of salinization distribution. This study focuses on the Manasi River Irrigation Area, analyzing the relationships between soil salinity and various factors, including irrigation area (IAR), water-saving irrigation area (WSIA), surface water withdrawal (SWDA), groundwater withdrawal (UWDA), groundwater depth (GL), groundwater mineralization (MG), elevation (EL), soil bulk density (SBD), evaporation (AE), and precipitation (AR) over the temporal and spatial scales from 2013 to 2021 by correlation analysis. A geographically weighted regression (GWR) model was employed to predict the distribution of soil salinization at the irrigation scale. The results show that soil salinization in irrigation areas showed obvious spatial variation, and with time, the degree of soil salinization continued to improve, and the proportion of salinization area decreased from 98.9 % in 2013 to 63.3 % in 2021. The proportion of severe salinization and saline soil decreased to 0. On the spatial scale, there is a highly significant correlation between soil salinity and irrigation area (IAR), water-saving irrigation area (WSIA), surface water diversion (SWDA), underground water diversion (UWDA), groundwater level (GL), mineralization of groundwater (MG), elevation (EL) and soil bulk density (SBD). The correlation coefficient between soil salinity and WSIA MG is the highest, at −0.92 and 0.98, respectively. There is a highly significant correlation between soil salinity on the time scale and IAR, WSIA, SWDA, GL, MG, and SBD on the annual scale. The largest correlation coefficients are between soil salinity and WSIA (-0.99) and MG (0.99). The simulation result of soil salinity by GWR model has high precision, the slope of the simulation result is greater than 0.94, R2 is greater than 0.98, and the relative root mean square error RRMSE is less than 13.08 %, which can well simulate the spatial distribution of soil salt in the irrigation area. The findings of this study are significant for understanding and controlling the distribution of soil salinization at the irrigation area scale.

Suggested Citation

  • Li, Wenhao & Gao, Shuanglong & Pei, Dongjie & Wen, Yue & Mu, Xiaoguo & Liu, Mengjie & Wang, Zhenhua, 2025. "Spatio-temporal evolution and simulation of soil salinization in typical oasis water-saving irrigation area based on long series data," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424006115
    DOI: 10.1016/j.agwat.2024.109275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424006115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    2. Peiyue Li & Hui Qian & Jianhua Wu, 2018. "Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(3), pages 337-353, May.
    3. Sun, Guanfang & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Qu, Zhongyi & Mao, Wei & Wu, Jingwei, 2019. "Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area," Agricultural Water Management, Elsevier, vol. 213(C), pages 486-498.
    4. Ke, Zengming & Liu, Xiaoli & Ma, Lihui & Feng, Zhe & Tu, Wen & Dong, Qin’ge & Jiao, Feng & Wang, Zhanli, 2021. "Rainstorm events increase risk of soil salinization in a loess hilly region of China," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Zhang, Zhenyu & Li, Xiaoyu & Liu, Lijuan & Wang, Yugang & Li, Yan, 2020. "Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area," Agricultural Water Management, Elsevier, vol. 230(C).
    6. Zhihua Ma & Yishu Xue & Guanyu Hu, 2021. "Geographically Weighted Regression Analysis for Spatial Economics Data: A Bayesian Recourse," International Regional Science Review, , vol. 44(5), pages 582-604, September.
    7. Yan, Haofang & Li, Mi & Zhang, Chuan & Zhang, Jianyun & Wang, Guoqing & Yu, Jianjun & Ma, Jiamin & Zhao, Shuang, 2022. "Comparison of evapotranspiration upscaling methods from instantaneous to daytime scale for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    9. Roberts, Trenton L. & White, Scott A. & Warrick, Arthur W. & Thompson, Thomas L., 2008. "Tape depth and germination method influence patterns of salt accumulation with subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 669-677, June.
    10. Li Xu & Hongru Du & Xiaolei Zhang, 2019. "Spatial Distribution Characteristics of Soil Salinity and Moisture and Its Influence on Agricultural Irrigation in the Ili River Valley, China," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    2. Ziyuan Qin & Tangzhe Nie & Ying Wang & Hexiang Zheng & Changfu Tong & Jun Wang & Rongyang Wang & Hongfei Hou, 2025. "The Characteristics and Driving Factors of Soil Salinisation in the Irrigated Area on the Southern Bank of the Yellow River in Inner Mongolia: A Assessment of the Donghaixin Irrigation District," Agriculture, MDPI, vol. 15(5), pages 1-22, March.
    3. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    5. Huang, Yajie & Ma, Yibing & Zhang, Shiwen & Li, Zhen & Huang, Yuanfang, 2021. "Optimum allocation of salt discharge areas in land consolidation for irrigation districts by SahysMod," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Yannan Liu & Yan Zhu & Wei Mao & Guanfang Sun & Xudong Han & Jingwei Wu & Jinzhong Yang, 2022. "Development and Application of a Water and Salt Balance Model for Well-Canal Conjunctive Irrigation in Semiarid Areas with Shallow Water Tables," Agriculture, MDPI, vol. 12(3), pages 1-25, March.
    7. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    8. Nicolette Matthews & Bennie Grové & Johannes Hendrikus Barnard, 2025. "Economic Analysis of Segmented Soil Salinity Management Using Current Irrigation Technology," Agriculture, MDPI, vol. 15(8), pages 1-14, April.
    9. Qiying Zhang & Panpan Xu & Hui Qian, 2019. "Assessment of Groundwater Quality and Human Health Risk (HHR) Evaluation of Nitrate in the Central-Western Guanzhong Basin, China," IJERPH, MDPI, vol. 16(21), pages 1-16, November.
    10. Siyal, A.A. & van Genuchten, M. Th. & Skaggs, T.H., 2013. "Solute transport in a loamy soil under subsurface porous clay pipe irrigation," Agricultural Water Management, Elsevier, vol. 121(C), pages 73-80.
    11. Wang, Weishu & Rong, Yao & Dai, Xiaoqin & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Variation and attribution of energy distribution for salinized sunflower farmland in arid area," Agricultural Water Management, Elsevier, vol. 297(C).
    12. Li, He & Miao, Qingfeng & Shi, Haibin & Li, Xianyue & Zhang, Shengwei & Zhang, Fengxia & Bu, Huailiang & Wang, Pei & Yang, Lin & Wang, Yali & Du, Heng & Wang, Tong & Feng, Weiying, 2024. "Remote sensing monitoring of irrigated area in the non-growth season and of water consumption analysis in a large-scale irrigation district," Agricultural Water Management, Elsevier, vol. 303(C).
    13. Feng Tian & Haibin Shi & Qingfeng Miao & Ruiping Li & Jie Duan & Xu Dou & Weiying Feng, 2023. "Soil Water and Salt Transport in Severe Saline–Alkali Soil after Ditching under Subsurface Pipe Drainage Conditions," Agriculture, MDPI, vol. 13(12), pages 1-20, November.
    14. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    15. Guo, Shuhao & Li, Xianyue & Šimůnek, Jirí & Wang, Jun & Zhang, Yuehong & Wang, Ya'nan & Zhen, Zhixin & He, Rui, 2024. "Experimental and numerical evaluation of soil water and salt dynamics in a corn field with shallow saline groundwater and crop-season drip and autumn post-harvest irrigations," Agricultural Water Management, Elsevier, vol. 305(C).
    16. Mo, Yan & Li, Guangyong & Wang, Dan, 2017. "A sowing method for subsurface drip irrigation that increases the emergence rate, yield, and water use efficiency in spring corn," Agricultural Water Management, Elsevier, vol. 179(C), pages 288-295.
    17. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    18. Zhang, Junxiao & Xie, Xiangwen & Wu, Changxue & Cai, Fan & Xu, Yongmei, 2025. "Effects of delayed nitrogen fertilizer drip timing on soil total salt, cotton yield and nitrogen fertilizer use efficiency," Agricultural Water Management, Elsevier, vol. 312(C).
    19. J. W. Sirpa-Poma & F. Satgé & R. Pillco Zolá & E. Resongles & M. Perez-Flores & M. G. Flores Colque & J. Molina-Carpio & O. Ramos & M.-P. Bonnet, 2024. "Complementarity of Sentinel-1 and Sentinel-2 Data for Soil Salinity Monitoring to Support Sustainable Agriculture Practices in the Central Bolivian Altiplano," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    20. Singh, Atinderpal & Bista, Prakriti & Deb, Sanjit K. & Ghimire, Rajan, 2025. "Simulating cover crops impacts on soil water and nitrogen dynamics and silage yield in the semi-arid Southwestern United States," Agricultural Water Management, Elsevier, vol. 307(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424006115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.