IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v283y2023ics0378377423001889.html
   My bibliography  Save this article

Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation

Author

Listed:
  • Zhang, Junwei
  • Xiang, Lingxiao
  • Zhu, Chenxi
  • Li, Wuqiang
  • Jing, Dan
  • Zhang, Lili
  • Liu, Yong
  • Li, Tianlai
  • Li, Jianming

Abstract

Irrigation management has become a critical concern in the face of increasing water scarcity and food demand, particularly in the arid and semi-arid regions of the world. However, the effects of climate and soil texture on irrigation schedules remain unclear. In the present study, a two-year trial (2019–2020) was conducted in three greenhouses with different climates and soil textures under drip irrigation. The irrigation schedules were based on the cumulative evaporation (CE) of a 20 cm pan. Three treatments with different amounts of irrigation (I) were set in 2019. Three irrigation frequencies (IF) in combination with three irrigation amounts were set in 2020. A numerical model (HYDRUS-2D) was applied to simulate the soil water balance of greenhouse tomatoes. Tomato yield and irrigation water use efficiency (IWUE) were measured, and the responses of photosynthetic indices to soil water availability (SWA) were quantified. The results indicated that the soil water content (SWC) simulated by HYDRUS-2D was in accordance with the observed data, with average root mean square error (RMSE), mean bias error (MBE), and index agreement (IA) reaching 0.0127 cm3 cm−3, −0.0010 cm3 cm−3, and 0.9275, respectively. Among the four photosynthetic indices, the normalized photosynthetic rate exhibited the highest degree of fit (R2 =0.9678) with SWA (0–20 cm). Increased irrigation frequency (high IF) reduced the deep drainage by 24.6%, 10.5%, and 3.0% in sandy loam, loam, and silty clay soils, respectively. It was concluded that frequent irrigation with low amount can be applied to sandy loamy soil, whereas a lower irrigation frequency and larger single irrigation amount are recommended for silty clay soil. Our study provides theoretical support for irrigation management in semiarid regions with similar climates and soil textures.

Suggested Citation

  • Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001889
    DOI: 10.1016/j.agwat.2023.108323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    2. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
    3. Wu, Yuanzhi & Huang, Mingbin & Gallichand, Jacques, 2011. "Transpirational response to water availability for winter wheat as affected by soil textures," Agricultural Water Management, Elsevier, vol. 98(4), pages 569-576, February.
    4. Wang, Lichun & Ning, Songrui & Chen, Xiaoli & Li, Youli & Guo, Wenzhong & Ben-Gal, Alon, 2021. "Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    6. Mohammadi, Adel & Besharat, Sina & Abbasi, Fariborz, 2019. "Effects of irrigation and fertilization management on reducing nitrogen losses and increasing corn yield under furrow irrigation," Agricultural Water Management, Elsevier, vol. 213(C), pages 1116-1129.
    7. Ertek, Ahmet & Sensoy, Suat & Gedik, Ibrahim & Kucukyumuk, Cenk, 2006. "Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 159-172, March.
    8. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    9. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    10. Zheng, Jianhua & Huang, Guanhua & Jia, Dongdong & Wang, Jun & Mota, Mariana & Pereira, Luis S. & Huang, Quanzhong & Xu, Xu & Liu, Haijun, 2013. "Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 129(C), pages 181-193.
    11. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    12. Cavero, J. & Plant, R. E. & Shennan, C. & Williams, J. R. & Kiniry, J. R. & Benson, V. W., 1998. "Application of epic model to nitrogen cycling in irrigated processing tomatoes under different management systems," Agricultural Systems, Elsevier, vol. 56(4), pages 391-414, April.
    13. Liu, Ziqi & Li, Kaiping & Xiong, Kangning & Li, Yuan & Wang, Jin & Sun, Jian & Cai, Lulu, 2021. "Effects of Zanthoxylum bungeanum planting on soil hydraulic properties and soil moisture in a karst area," Agricultural Water Management, Elsevier, vol. 257(C).
    14. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    15. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    16. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    17. Ertek, Ahmet & Sensoy, Suat & Kucukyumuk, Cenk & Gedik, Ibrahim, 2004. "Irrigation frequency and amount affect yield components of summer squash (Cucurbita pepo L.)," Agricultural Water Management, Elsevier, vol. 67(1), pages 63-76, June.
    18. Zotarelli, Lincoln & Scholberg, Johannes M. & Dukes, Michael D. & Muñoz-Carpena, Rafael & Icerman, Jason, 2009. "Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(1), pages 23-34, January.
    19. Kang, Yaohu & Wang, Ruoshui & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Liu, Shiping, 2012. "Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China," Agricultural Water Management, Elsevier, vol. 109(C), pages 117-126.
    20. Sezen, S. Metin & Yucel, Seral & Tekin, Servet & Yıldız, Mehmet, 2019. "Determination of optimum irrigation and effect of deficit irrigation strategies on yield and disease rate of peanut irrigated with drip system in Eastern Mediterranean," Agricultural Water Management, Elsevier, vol. 221(C), pages 211-219.
    21. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    22. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    23. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    24. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    25. Shilong Piao & Philippe Ciais & Pierre Friedlingstein & Philippe Peylin & Markus Reichstein & Sebastiaan Luyssaert & Hank Margolis & Jingyun Fang & Alan Barr & Anping Chen & Achim Grelle & David Y. Ho, 2008. "Net carbon dioxide losses of northern ecosystems in response to autumn warming," Nature, Nature, vol. 451(7174), pages 49-52, January.
    26. Nazari, Ehsan & Besharat, Sina & Zeinalzadeh, Kamran & Mohammadi, Adel, 2021. "Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree," Agricultural Water Management, Elsevier, vol. 255(C).
    27. Sun, Miao & Gao, Xuerui & Zhang, Yulin & Song, Xiaolin & Zhao, Xining, 2022. "A new solution of high-efficiency rainwater irrigation mode for water management in apple plantation: Design and application," Agricultural Water Management, Elsevier, vol. 259(C).
    28. Wu, You & Yan, Shicheng & Fan, Junliang & Zhang, Fucang & Zhao, Wenju & Zheng, Jing & Guo, Jinjin & Xiang, Youzhen & Wu, Lifeng, 2022. "Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 262(C).
    29. Lecaros-Arellano, F. & Holzapfel, E. & Fereres, E. & Rivera, D. & Muñoz, N. & Jara, J., 2021. "Effects of the number of drip laterals on yield and quality of apples grown in two soil types," Agricultural Water Management, Elsevier, vol. 248(C).
    30. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Hu, Xiaotao, 2006. "Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 41-52, July.
    31. Shen Yuan & Bruce A. Linquist & Lloyd T. Wilson & Kenneth G. Cassman & Alexander M. Stuart & Valerien Pede & Berta Miro & Kazuki Saito & Nurwulan Agustiani & Vina Eka Aristya & Leonardus Y. Krisnadi &, 2021. "Sustainable intensification for a larger global rice bowl," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Lei & Li, Bo & Yao, Mingze & Niu, Dongshuang & Gao, Manman & Mao, Lizhen & Xu, Zhanyang & Wang, Tieliang & Wang, Jingkuan, 2023. "Optimising water and nitrogen management for greenhouse tomatoes in Northeast China using EWM−TOPSIS−AISM model," Agricultural Water Management, Elsevier, vol. 290(C).
    2. Zhang, Junwei & Xiang, Lingxiao & Liu, Yuxin & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Wuqiang & Wang, Xiaoyan & Li, Tianlai & Li, Jianming, 2024. "Optimizing irrigation schedules of greenhouse tomato based on a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Sabri Kanzari & Jiří Šimůnek & Issam Daghari & Anis Younes & Khouloud Ben Ali & Sana Ben Mariem & Samir Ghannem, 2024. "Modeling Irrigation of Tomatoes with Saline Water in Semi-Arid Conditions Using Hydrus-1D," Land, MDPI, vol. 13(6), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Junwei & Xiang, Lingxiao & Liu, Yuxin & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Wuqiang & Wang, Xiaoyan & Li, Tianlai & Li, Jianming, 2024. "Optimizing irrigation schedules of greenhouse tomato based on a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 295(C).
    2. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    4. Sun, Lei & Li, Bo & Yao, Mingze & Niu, Dongshuang & Gao, Manman & Mao, Lizhen & Xu, Zhanyang & Wang, Tieliang & Wang, Jingkuan, 2023. "Optimising water and nitrogen management for greenhouse tomatoes in Northeast China using EWM−TOPSIS−AISM model," Agricultural Water Management, Elsevier, vol. 290(C).
    5. Liang, Yonghui & Wen, Yue & Meng, Yu & Li, Haiqiang & Song, Libing & Zhang, Jinzhu & Ma, Zhanli & Han, Yue & Wang, Zhenhua, 2024. "Effects of biodegradable film types and drip irrigation amounts on maize growth and field carbon sequestration in arid northwest China," Agricultural Water Management, Elsevier, vol. 299(C).
    6. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Ning, Songrui & Zhou, Beibei & Shi, Jianchu & Wang, Quanjiu, 2021. "Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern Xinjiang," Agricultural Water Management, Elsevier, vol. 245(C).
    8. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    9. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    10. Wang, Jingwei & Li, Yuan & Niu, Wenquan, 2021. "Effect of alternating drip irrigation on soil gas emissions, microbial community composition, and root–soil interactions," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    12. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    14. Wu, You & Si, Wei & Yan, Shicheng & Wu, Lifeng & Zhao, Wenju & Zhang, Jiale & Zhang, Fucang & Fan, Junliang, 2023. "Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices," Agricultural Water Management, Elsevier, vol. 277(C).
    15. Sensoy, Suat & Ertek, Ahmet & Gedik, Ibrahim & Kucukyumuk, Cenk, 2007. "Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.)," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 269-274, March.
    16. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    17. Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    18. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    19. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.
    20. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.