IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v241y2020ics0378377420303243.html
   My bibliography  Save this article

Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China

Author

Listed:
  • Thidar, Myint
  • Gong, Daozhi
  • Mei, Xurong
  • Gao, Lili
  • Li, Haoru
  • Hao, Weiping
  • Gu, Fengxue

Abstract

Knowledge of root systems and soil water status across the root-zone is crucial in developing effective cropping technologies. Mulching improves soil water status and root water transport for increasing grain yield. Therefore, a field experiment with five treatments: (1) plastic film mulching ridge and non-mulching furrow (RF), (2) full plastic mulching with conventional flat cultivation (FPM), (3) straw mulching with conventional flat cultivation (SM), (4) partial plastic mulching with conventional flat cultivation (PPM) and (5) non-mulch with conventional flat cultivation (CK) was conducted during 2018 and 2019 in the eastern Loess Plateau of China. The total root biomass and the grain yield of all treatments were lower in 2019 than that of 2018 because of lower rainfall. However, all the mulching treatments improved root growth in both growing seasons mainly on the top 30 cm soil depth, which led to a distinct effect on grain yield as compared with CK. FPM produced the highest total root parameters in 2018 and at 45 DAS in 2019 due to the highest soil moisture content mainly in 0−30 cm soil depth. However, root biomass of FPM in 30−100 cm soil depth was lower than that of PPM, RF and SM because assimilate at reproductive stage was mostly for plant and seed growth than root growth, thus, there was negative correlation between grain yield and root biomass below 30 cm soil depth especially at grain filling stage. Over two growing seasons, soil moisture content (SMC) under FPM was 8.4 %, 0.6 %, 8.8 % and 11.1 % more than that of RF, SM, PPM and CK. FPM reduced soil evaporation, improved SMC, root distribution and transpiration rate, consequently, increased grain yield and net profit. Therefore FPM is an effective cropping system for improving the synchronization of soil water transport and root water uptake for maize production in rain-fed farming.

Suggested Citation

  • Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420303243
    DOI: 10.1016/j.agwat.2020.106340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420303243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Wu, Youjie & Du, Taisheng & Ding, Risheng & Yuan, Yusen & Li, Sien & Tong, Ling, 2017. "An isotope method to quantify soil evaporation and evaluate water vapor movement under plastic film mulch," Agricultural Water Management, Elsevier, vol. 184(C), pages 59-66.
    3. Daozhi Gong & Weiping Hao & Xurong Mei & Xiang Gao & Qi Liu & Kelly Caylor, 2015. "Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-20, August.
    4. Zhang, Dengkui & Wang, Qi & Zhou, Xujiao & Liu, Qinglin & Wang, Xiaoyun & Zhao, Xiaole & Zhao, Wucheng & He, Chenggang & Li, Xiaoling & Li, Guang & Chen, Jin, 2020. "Suitable furrow mulching material for maize and sorghum production with ridge-furrow rainwater harvesting in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 228(C).
    5. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    6. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    7. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    8. Elmaloglou, S. & Diamantopoulos, E., 2009. "Simulation of soil water dynamics under subsurface drip irrigation from line sources," Agricultural Water Management, Elsevier, vol. 96(11), pages 1587-1595, November.
    9. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    10. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    11. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J. & Tian, X.H., 2013. "Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China," Agricultural Water Management, Elsevier, vol. 116(C), pages 39-49.
    12. Passioura, J. B., 1983. "Roots and drought resistance," Agricultural Water Management, Elsevier, vol. 7(1-3), pages 265-280, September.
    13. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    14. Qin, Shuhao & Zhang, Junlian & Dai, Hailin & Wang, Di & Li, Deming, 2014. "Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area," Agricultural Water Management, Elsevier, vol. 131(C), pages 87-94.
    15. Li, Xiao-Yan & Gong, Jia-Dong & Gao, Qian-Zhao & Li, Feng-Rui, 2001. "Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions," Agricultural Water Management, Elsevier, vol. 50(3), pages 173-183, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xufeng Li & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Ruixia Chen & Jianglong An, 2023. "Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    2. Wang, Weiyan & Guo, Wenjia & Dong, Jiangyao & Zhang, Houping & Liao, Yuncheng & Wen, Xiaoxia, 2024. "Ridge-furrow planting patterns with film mulching improve water use efficiency by enhancing arbuscular mycorrhizal fungi in the rhizosphere and endophyte of summer maize," Agricultural Water Management, Elsevier, vol. 296(C).
    3. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Wang, Feng & Wang, Yulong & Lyu, Hanqiang & Fan, Zhilong & Hu, Falong & He, Wei & Yin, Wen & Zhao, Cai & Chai, Qiang & Yu, Aizhong, 2023. "No-tillage mulch with leguminous green manure retention reduces soil evaporation and increases yield and water productivity of maize," Agricultural Water Management, Elsevier, vol. 290(C).
    5. Li, Rui & Chai, Shouxi & Chai, Yuwei & Li, Yawei & Lan, Xuemei & Ma, Jiantao & Cheng, Hongbo & Chang, Lei, 2021. "Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Fang, Qin & Wang, Yanzhe & Uwimpaye, Fasilate & Yan, Zongzheng & Li, Lu & Liu, Xiuwei & Shao, Liwei, 2021. "Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Zhu, Jie & Chen, Shanghong & Zhang, Qingwen & Mei, Xurong, 2023. "Multi-year vertical and life cycle impacts of C-N management on soil moisture regimes," Agricultural Water Management, Elsevier, vol. 290(C).
    8. Wang, Zhuangji & Timlin, Dennis & Li, Sanai & Fleisher, David & Dathe, Annette & Luo, Chenyi & Dong, Lixin & Reddy, Vangimalla R. & Tully, Katherine, 2021. "A diffusive model of maize root growth in MAIZSIM and its applications in Ridge-Furrow Rainfall Harvesting," Agricultural Water Management, Elsevier, vol. 254(C).
    9. Lv, Shenqiang & Li, Jia & Yang, Zeyu & Yang, Ting & Li, Huitong & Wang, Xiaofei & Peng, Yi & Zhou, Chunju & Wang, Linquan & Abdo, Ahmed I., 2023. "The field mulching could improve sustainability of spring maize production on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 279(C).
    10. Liao, Zhenqi & Zhang, Chen & Yu, Shuolei & Lai, Zhenlin & Wang, Haidong & Zhang, Fucang & Li, Zhijun & Wu, Peng & Fan, Junliang, 2023. "Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    11. Guixin Zhang & Shibo Zhang & Zhenqing Xia & Mengke Wu & Jingxuan Bai & Haidong Lu, 2023. "Effects of Biodegradable Film and Polyethylene Film Residues on Soil Moisture and Maize Productivity in Dryland," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
    12. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng, 2022. "Root characteristics, utilization of water and nitrogen, and yield of maize under biodegradable film mulching and nitrogen application," Agricultural Water Management, Elsevier, vol. 262(C).
    13. Mengyu Guo & Bin Hu & Xin Luo & Chenglin Yuan & Yiquan Cai & Luochuan Xu, 2023. "Design and Test of a Sliding Cutting Device for the Plastic Mulch Waste," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    14. Zhao, Xiaofang & Huang, Mingbin & Yan, Xiaoying & Yang, Yingnan, 2022. "The impacts of climate change and cropping systems on soil water recovery in the 0–1500 cm soil profile after alfalfa," Agricultural Water Management, Elsevier, vol. 272(C).
    15. Xiaolong Liu & Ruijie Shi & Wuyun Zhao & Wei Sun & Peiwen Li & Hui Li & Hua Zhang & Jiuxin Wang & Guanping Wang & Fei Dai, 2024. "Study on the Characteristics of Residual Film–Soil–Root Stubble Complex in Maize Stubble Fields of the Hexi Corridor and Establishment of a Discrete Element Model," Agriculture, MDPI, vol. 14(9), pages 1-21, September.
    16. Chen, Ning & Li, Xianyue & Shi, Haibin & Zhang, Yuehong & Hu, Qi & Sun, Ya’nan, 2023. "Modeling effects of biodegradable film mulching on evapotranspiration and crop yields in Inner Mongolia," Agricultural Water Management, Elsevier, vol. 275(C).
    17. Liu, Yu & Li, Shilei & Liu, Yanxin & Shen, Hongzheng & Huang, Tingting & Ma, Xiaoyi, 2023. "Optimization of a nitrogen fertilizer application scheme for spring maize in full-film double-ridge furrow in Longzhong, China," Agricultural Water Management, Elsevier, vol. 290(C).
    18. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    2. Li, Yue & Chen, Hao & Feng, Hao & Dong, Qin’ge & Wu, Wenjie & Zou, Yufeng & Chau, Henry Wai & Siddique, Kadambot H.M., 2020. "Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 233(C).
    3. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    4. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    5. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    6. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    8. Li, Yue & Feng, Hao & Wu, Wenjie & Jiang, Yu & Sun, Jian & Zhang, Yuefang & Cheng, Hui & Li, Cheng & Dong, Qin’ge & Siddique, Kadambot H.M. & Chen, Ji, 2022. "Decreased greenhouse gas intensity of winter wheat production under plastic film mulching in semi-arid areas," Agricultural Water Management, Elsevier, vol. 274(C).
    9. Qin, Xiaoliang & Huang, Tiantian & Lu, Chen & Dang, Pengfei & Zhang, Miaomiao & Guan, Xiao-kang & Wen, Peng-fei & Wang, Tong-Chao & Chen, Yinglong & Siddique, Kadambot H.M., 2021. "Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    11. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    13. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    14. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    16. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    17. Fan, Tinglu & Wang, Shuying & Li, Yongping & Yang, Xiaomei & Li, Shangzhong & Ma, Mingsheng, 2019. "Film mulched furrow-ridge water harvesting planting improves agronomic productivity and water use efficiency in Rainfed Areas," Agricultural Water Management, Elsevier, vol. 217(C), pages 1-10.
    18. Xing Wang & Hailong Sun & Changming Tan & Xiaowen Wang & Min Xia, 2021. "Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    19. Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    20. Zhang, Xiao-Feng & Luo, Chong-Liang & Ren, Hong-Xu & Mburu, David & Wang, Bao-Zhong & Kavagi, Levis & Wesly, Kiprotich & Nyende, Aggrey Bernard & Xiong, You-Cai, 2021. "Water productivity and its allometric mechanism in mulching cultivated maize (Zea mays L.) in semiarid Kenya," Agricultural Water Management, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420303243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.