IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v275y2023ics0378377422005431.html
   My bibliography  Save this article

Modeling effects of biodegradable film mulching on evapotranspiration and crop yields in Inner Mongolia

Author

Listed:
  • Chen, Ning
  • Li, Xianyue
  • Shi, Haibin
  • Zhang, Yuehong
  • Hu, Qi
  • Sun, Ya’nan

Abstract

The use of biodegradable film has been increasingly recommended as an alternative to conventional plastic films. Several studies have evaluated the applicability of biodegradable film mulching (BRM). However, the large-scale effects of BRM on the spatiotemporal distribution of evapotranspiration (ET) and crop yields remain unclear. Furthermore, existing DSSAT (decision support system for agrotechnology transfer) models cannot accurately represent crop yields, as they fail to account for the impact of the disintegration rates of biodegradable films (DR) on air temperature (Ta) compensation, which represents the effect of soil temperature changes in mulched conditions on crop growth in the form of air temperature changes. Therefore, this study proposed an improved DSSAT model under BRM (BDSSAT) by considering the impact of DR on Ta compensation, and the performance of the model was compared with those of the DSSAT and modified DSSAT (MDSSAT). These models were validated using observed data from nine typical experimental sites in Inner Mongolia from 2015 to 2018. Moreover, 96 meteorological stations and soil textures were selected to evaluate the effect of BRM on soil water storage (SWS) (the amount of water stored in a given soil body, mm), ET, and crop yields of the primary cultivated crops (sunflower, potato, corn). Our findings demonstrated that the BDSSAT model could accurately simulate the SWS, ET, and crop yield under BRM. The normalized root mean square error (nRMSE) of ET simulated by the BDSSAT model was 49.4 % and 66.3 % lower than that of the MDSSAT and DSSAT models, respectively. An apparent spatial difference in SWS, ET, and crop yield was found in different regions due to the differences in soil texture, meteorological data, and agricultural management strategy. The spatial distributions of ET and crop yield of sunflower, potato, and corn in different regions were largely consistent with the spatial distribution of SWS. Furthermore, the ET and crop yield of sunflower and potato crops in different regions increased with time (2015–2018) due to an increase in rainfall. However, these effects were not observed in corn yields in the eastern region. Additionally, the DR in the western, middle, and eastern regions should not exceed 55 %, 73 %, and 90 %, respectively, to ensure high field production (crop yield was higher than the historic average). Crop yields in different regions increased in response to future climate change, as the average Ta was projected to increase by 0.8 °C from 2019 to 2050, except for sunflower yields in the western region.

Suggested Citation

  • Chen, Ning & Li, Xianyue & Shi, Haibin & Zhang, Yuehong & Hu, Qi & Sun, Ya’nan, 2023. "Modeling effects of biodegradable film mulching on evapotranspiration and crop yields in Inner Mongolia," Agricultural Water Management, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005431
    DOI: 10.1016/j.agwat.2022.107996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422005431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Gao, Xuhua & Xie, Dong & Yang, Chong, 2021. "Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on crop and soil environment," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Razzaghi, Fatemeh & Plauborg, Finn & Jacobsen, Sven-Erik & Jensen, Christian Richardt & Andersen, Mathias Neumann, 2012. "Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa," Agricultural Water Management, Elsevier, vol. 109(C), pages 20-29.
    4. Chen, Ning & Li, Xianyue & Shi, Haibin & Hu, Qi & Zhang, Yuehong & Hou, Chenli & Liu, Yahui, 2022. "Modeling evapotranspiration and evaporation in corn/tomato intercropping ecosystem using a modified ERIN model considering plastic film mulching," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Chen, Ning & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Ding, Zongjiang & Peng, Zunyuan, 2019. "Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field," Agricultural Water Management, Elsevier, vol. 226(C).
    6. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Brodhagen, Marion & Goldberger, Jessica R. & Hayes, Douglas G. & Inglis, Debra Ann & Marsh, Thomas L. & Miles, Carol, 2017. "Policy considerations for limiting unintended residual plastic in agricultural soils," Environmental Science & Policy, Elsevier, vol. 69(C), pages 81-84.
    8. Li, Meng & Du, Yingji & Zhang, Fucang & Bai, Yungang & Fan, Junliang & Zhang, Jianghui & Chen, Shaoming, 2019. "Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model," Agricultural Water Management, Elsevier, vol. 218(C), pages 124-138.
    9. Saglam, Mustafa & Sintim, Henry Y. & Bary, Andy I. & Miles, Carol A. & Ghimire, Shuresh & Inglis, Debra A. & Flury, Markus, 2017. "Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics," Agricultural Water Management, Elsevier, vol. 193(C), pages 240-250.
    10. Ingrid E. Meyer-Cifuentes & Johannes Werner & Nico Jehmlich & Sabine E. Will & Meina Neumann-Schaal & Başak Öztürk, 2020. "Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    11. Gong, Xuewen & Liu, Hao & Sun, Jingsheng & Gao, Yang & Zhang, Hao, 2019. "Comparison of Shuttleworth-Wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse," Agricultural Water Management, Elsevier, vol. 217(C), pages 141-153.
    12. Garibay, Victoria M. & Kothari, Kritika & Ale, Srinivasulu & Gitz, Dennis C. & Morgan, Gaylon D. & Munster, Clyde L., 2019. "Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jiří & Shi, Haibin & Chen, Ning & Hu, Qi, 2023. "Quantifying water and salt movement in a soil-plant system of a corn field using HYDRUS (2D/3D) and the stable isotope method," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Chen, Ning & Li, Xianyue & Shi, Haibin & Yan, Jianwen & Zhang, Yuehong & Hu, Qi, 2023. "Evaluating the effects of plastic film mulching duration on soil nitrogen dynamic and comprehensive benefit for corn (Zea mays L.) field," Agricultural Water Management, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Yu, Qihua & Kang, Shaozhong & Zhang, Lu & Hu, Shunjun & Li, Yunfeng & Parsons, David, 2023. "Incorporating new functions into the WAVES model, to better simulate cotton production under film mulching and severe salinity," Agricultural Water Management, Elsevier, vol. 288(C).
    6. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    7. Himanshu, Sushil Kumar & Fan, Yubing & Ale, Srinivasulu & Bordovsky, James, 2021. "Simulated efficient growth-stage-based deficit irrigation strategies for maximizing cotton yield, crop water productivity and net returns," Agricultural Water Management, Elsevier, vol. 250(C).
    8. Huang, Fangyuan & Liu, Zihan & Li, Zhaoyang & Wang, Bingfan & Zhang, Peng & Jia, ZhiKuan, 2022. "Is biodegradable film an alternative to polyethylene plastic film for improving maize productivity in rainfed agricultural areas? — Evidence from field experiments," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Himanshu, Sushil K. & Ale, Srinivasulu & Bell, Jourdan & Fan, Yubing & Samanta, Sayantan & Bordovsky, James P. & Gitz III, Dennis C. & Lascano, Robert J. & Brauer, David K., 2023. "Evaluation of growth-stage-based variable deficit irrigation strategies for cotton production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 280(C).
    10. Leng, Xu & Li, Xianyue & Chen, Ning & Zhang, Jinjun & Guo, Yu & Ding, Zongjiang, 2021. "Evaluating the effects of biodegradable film mulching and topdressing nitrogen on nitrogen dynamic and utilization in the arid cornfield," Agricultural Water Management, Elsevier, vol. 258(C).
    11. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Yu, Meng & Chen, Pengpeng & Li, Yupeng & Liu, Fulai, 2022. "Optimizing the impact of film mulching pattern and nitrogen application rate on maize production, gaseous N emissions, and utilization of water and nitrogen in northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    12. Li, Rui & Chai, Shouxi & Chai, Yuwei & Li, Yawei & Lan, Xuemei & Ma, Jiantao & Cheng, Hongbo & Chang, Lei, 2021. "Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 254(C).
    13. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    14. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    15. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    16. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    17. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).
    18. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    19. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    20. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.