IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v261y2022ics0378377421006272.html
   My bibliography  Save this article

Optimizing the impact of film mulching pattern and nitrogen application rate on maize production, gaseous N emissions, and utilization of water and nitrogen in northwest China

Author

Listed:
  • Fang, Heng
  • Li, Yuannong
  • Gu, Xiaobo
  • Yu, Meng
  • Chen, Pengpeng
  • Li, Yupeng
  • Liu, Fulai

Abstract

Film mulching and nitrogen fertilization are two effective practices to promote maize production in northwest China, but their impacts on environment in terms of greenhouse gas emission remain unclear. Two-year field trials were conducted to 1) explore the effect of the film mulching pattern and N fertilization rate on maize production, gaseous N emission, and utilization of N and water; 2) find an optimal mulching pattern and N-fertilization rate to achieve green development. Trial Ⅰ included flat planting with non-mulching (NM), ridge-furrow with plastic film mulch (PM), ridge-furrow with biodegradable film mulch (BM), and flat planting with full plastic film mulching (FM). Trial Ⅱ involved BM with N-fertilization rates (0, 90, 180, and 270 kg N ha−1), denoted as BMN0, BMN1, BMN2, and BMN3, respectively. The results showed that film mulching significantly decreased the daily flux and cumulative flux of gaseous N by an average of 32.02%, 35.17% (NH3), 78.70%, 75.83% (N2O), respectively, as compared with NM. Film mulching also significantly increased the amount of soil residual mineral N after harvest, plant N uptake, and soil water storage but decreased evapotranspiration by an average of 8.31%, 9.42%, 17.45%, and 25.34%, respectively, as compared with NM. In addition, grain yield, water use efficiency (WUE), N uptake efficiency (UPE) (except for BM), N harvest index (NHI), N use efficiency (NUE), and partial productivity of N (PNP) were significantly higher in the mulching treatments, and yield–scaled NH3 emission (YSN) was significantly lower in PM and BM, as compared with NM. Compared with FM, soil residual mineral N after harvest, plant N uptake, grain yield, WUE, NUE, and PNP were significantly lower but NHI was significantly higher in PM and BM. The daily flux and cumulative flux of N2O emission and the amount of soil residual NO3− -N after harvest were significantly lower but plant N uptake was significantly higher in PM than in BM. Collectively, BM was the best mulching treatment in this study. With increase of N-fertilization rate, the daily flux and cumulative flux of NH3 volatilization, the peak period, and the cumulative flux of N2O emission, the grain yield, WUE, NUE (except for N3), and YSN were significantly increased but NHI, PNP, and UPE were significantly decreased. The optimum N-fertilization rate under BM was found at 173 kg ha−1, which could achieve the goal of high yield, efficient utilization of water and nitrogen, and environmental friendliness.

Suggested Citation

  • Fang, Heng & Li, Yuannong & Gu, Xiaobo & Yu, Meng & Chen, Pengpeng & Li, Yupeng & Liu, Fulai, 2022. "Optimizing the impact of film mulching pattern and nitrogen application rate on maize production, gaseous N emissions, and utilization of water and nitrogen in northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006272
    DOI: 10.1016/j.agwat.2021.107350
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 803-808.
    2. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Yan, Shicheng & Zhuang, Qianlai & Cui, Ningbo & Guo, Li, 2021. "Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China," Agricultural Water Management, Elsevier, vol. 248(C).
    3. Zhang, Xudong & Li, Zhimin & Siddique, Kadambot H.M. & Shayakhmetova, Altyn & Jia, Zhikuan & Han, Qingfang, 2020. "Increasing maize production and preventing water deficits in semi-arid areas: A study matching fertilization with regional precipitation under mulch planting," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    5. Chen, Ning & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Ding, Zongjiang & Peng, Zunyuan, 2019. "Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field," Agricultural Water Management, Elsevier, vol. 226(C).
    6. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Li, Yupeng & Chen, Pengpeng, 2021. "Can ridge-furrow with film and straw mulching improve wheat-maize system productivity and maintain soil fertility on the Loess Plateau of China?," Agricultural Water Management, Elsevier, vol. 246(C).
    7. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    8. Sun, Tao & Li, Geng & Ning, Tang-Yuan & Zhang, Zhi-Meng & Mi, Qing-Hua & Lal, Rattan, 2018. "Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut," Agricultural Water Management, Elsevier, vol. 208(C), pages 214-223.
    9. Zhou, Li & Wang, Yu & Jia, Qingyu & Li, Rongping & Zhou, Mengzi & Zhou, Guangsheng, 2019. "Evapotranspiration over a rainfed maize field in northeast China: How are relationships between the environment and terrestrial evapotranspiration mediated by leaf area?," Agricultural Water Management, Elsevier, vol. 221(C), pages 538-546.
    10. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?," Agricultural Water Management, Elsevier, vol. 190(C), pages 1-5.
    11. Li, Yang & Yang, Liye & Wang, Hao & Xu, Ranran & Chang, Shenghua & Hou, Fujiang & Jia, Qianmin, 2019. "Nutrient and planting modes strategies improves water use efficiency, grain-filling and hormonal changes of maize in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Saglam, Mustafa & Sintim, Henry Y. & Bary, Andy I. & Miles, Carol A. & Ghimire, Shuresh & Inglis, Debra A. & Flury, Markus, 2017. "Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics," Agricultural Water Management, Elsevier, vol. 193(C), pages 240-250.
    13. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    14. Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 654-658.
    15. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
    2. Chen, Ning & Li, Xianyue & Shi, Haibin & Yan, Jianwen & Zhang, Yuehong & Hu, Qi, 2023. "Evaluating the effects of plastic film mulching duration on soil nitrogen dynamic and comprehensive benefit for corn (Zea mays L.) field," Agricultural Water Management, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng, 2022. "Root characteristics, utilization of water and nitrogen, and yield of maize under biodegradable film mulching and nitrogen application," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Liao, Zhenqi & Zeng, Hualiang & Fan, Junliang & Lai, Zhenlin & Zhang, Chen & Zhang, Fucang & Wang, Haidong & Cheng, Minghui & Guo, Jinjin & Li, Zhijun & Wu, Peng, 2022. "Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching," Agricultural Water Management, Elsevier, vol. 268(C).
    6. Xiangxiang Wang & Zhilong Cheng & Xin Cheng & Quanjiu Wang, 2022. "Effects of Surface Mulching on the Growth and Water Consumption of Maize," Agriculture, MDPI, vol. 12(11), pages 1-12, November.
    7. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    8. Chen, Ning & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Ding, Zongjiang & Peng, Zunyuan, 2019. "Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field," Agricultural Water Management, Elsevier, vol. 226(C).
    9. Xing Wang & Hailong Sun & Changming Tan & Xiaowen Wang & Min Xia, 2021. "Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    10. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Zhang, Zhe & Zhang, Yanqing & Sun, Zhanxiang & Zheng, Jiaming & Liu, Enke & Feng, Liangshan & Feng, Chen & Si, Pengfei & Bai, Wei & Cai, Qian & Yang, Ning & van der Werf, Wopke & Zhang, Lizhen, 2019. "Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 212(C), pages 203-210.
    13. Dai, Yulong & Fan, Junliang & Liao, Zhenqi & Zhang, Chen & Yu, Jiang & Feng, Hanlong & Zhang, Fucang & Li, Zhijun, 2022. "Supplemental irrigation and modified plant density improved photosynthesis, grain yield and water productivity of winter wheat under ridge-furrow mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Zhang, Binbin & Hu, Yajin & Hill, Robert Lee & Wu, Shufang & Song, Xiaolin, 2021. "Combined effects of biomaterial amendments and rainwater harvesting on soil moisture, structure and apple roots in a rainfed apple orchard on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 248(C).
    15. Liu, Xiaoli & Wang, Yandong & Yan, Xiaoqun & Hou, Huizhi & Liu, Pei & Cai, Tie & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong & Chen, Xiaoli, 2020. "Appropriate ridge-furrow ratio can enhance crop production and resource use efficiency by improving soil moisture and thermal condition in a semi-arid region," Agricultural Water Management, Elsevier, vol. 240(C).
    16. Liu, Donghua & Shi, Zujiao & Ma, Qian & Zhang, Yan & Cai, Tie & Zhang, Peng & Jia, Zhikuan, 2023. "Strategy for matching fertilizer application with soil water before sowing can stabilize maize productivity under rainwater harvesting and mulching planting in dry areas: A six-year field experiment," Agricultural Water Management, Elsevier, vol. 287(C).
    17. Zhao, Xiao & Gu, Xiaobo & Yang, Zhichao & Li, Yuannong & Zhang, Li & Zhou, Jiaming, 2022. "Effects of soil preparation and mulching practices together with different urea applications on the water and nitrogen use of winter wheat in semi-humid and drought-prone areas," Agricultural Water Management, Elsevier, vol. 263(C).
    18. Wang, Yunqi & Guo, Tongji & Qi, Liuran & Zeng, Huanyu & Liang, Yuexin & Wei, Shikun & Gao, Fuli & Wang, Lixin & Zhang, Rui & Jia, Zhikuan, 2020. "Meta-analysis of ridge-furrow cultivation effects on maize production and water use efficiency," Agricultural Water Management, Elsevier, vol. 234(C).
    19. Braunack, Michael V. & Filipović, Vilim & Adhikari, Raju & Freischmidt, George & Johnston, Priscilla & Casey, Phil S. & Wang, Yusong & Šimůnek, Jiří & Filipović, Lana & Bristow, Keith L., 2021. "Evaluation of a Sprayable Biodegradable Polymer Membrane (SBPM) Technology for soil water conservation in tomato and watermelon production systems," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Chen, Ning & Li, Xianyue & Shi, Haibin & Zhang, Yuehong & Hu, Qi & Sun, Ya’nan, 2023. "Modeling effects of biodegradable film mulching on evapotranspiration and crop yields in Inner Mongolia," Agricultural Water Management, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.