IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424001069.html
   My bibliography  Save this article

Assessing water-nitrogen use, crop growth and economic benefits for maize in upper Yellow River basin: Feasibility analysis for border and drip irrigation

Author

Listed:
  • Qi, Zhi
  • Gao, Ya
  • Sun, Chen
  • Ramos, Tiago B.
  • Mu, Danning
  • Xun, Yihao
  • Huang, Guanhua
  • Xu, Xu

Abstract

Water-saving irrigation is becoming more important in the upper Yellow River basin (YRB) due to reduced water allocation and growing water scarcity. However, drip irrigation as an efficient irrigation method, has not gained as much acceptance as one might expect. In this study, integrated approaches involving field experiments, agro-ecosystem modeling, and financial analysis were proposed to evaluate the multiple benefits of two irrigation methods. Field experiments on maize irrigated with border irrigation and drip irrigation under plastic mulching (i.e., BI-M and DI-M) were conducted in the Hetao Irrigation District (Hetao) of the upper YRB during 2021 and 2022. The AHC model was calibrated and validated using two-year experimental data, performing well in simulations of soil water-salt-nitrogen (N) dynamics and crop growth. An irrigation scheduling module was newly incorporated into AHC. Then the model was applied to analyze scenarios consisting of three classes of groundwater depth (GWD) and five N application levels. Optimal irrigation and N-fertilization strategies were suggested; and DI-M showed significant advantages over BI-M in terms of water-saving (56–66 mm), labor-saving, environmental benefits (50 kg ha−1 less N fertilizer and 19–25 kg ha−1 less N loss), and crop yields (<4%), both in experimental and scenario cases. However, the financial analysis revealed that the current smallholder BI-M could achieve higher net returns (about 12%) compared to DI-M, since the family labor is often not counted as a cost in smallholder farming. Additionally, the widespread adoption of BI-M is also partly attributed to its easy operation. Lastly, results indicated a trend where the advantages of drip irrigation would become more significant in the future, with the increasing agricultural population aging and rising labor costs in the YRB.

Suggested Citation

  • Qi, Zhi & Gao, Ya & Sun, Chen & Ramos, Tiago B. & Mu, Danning & Xun, Yihao & Huang, Guanhua & Xu, Xu, 2024. "Assessing water-nitrogen use, crop growth and economic benefits for maize in upper Yellow River basin: Feasibility analysis for border and drip irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001069
    DOI: 10.1016/j.agwat.2024.108771
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Liangang & Wei, Xi & Wang, Chunying & Zhao, Rongqin, 2023. "Plastic film mulching significantly boosts crop production and water use efficiency but not evapotranspiration in China," Agricultural Water Management, Elsevier, vol. 275(C).
    2. Siad, Si Mokrane & Iacobellis, Vito & Zdruli, Pandi & Gioia, Andrea & Stavi, Ilan & Hoogenboom, Gerrit, 2019. "A review of coupled hydrologic and crop growth models," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    3. Rouzaneh, Davoud & Yazdanpanah, Masoud & Jahromi, Arman Bakhshi, 2021. "Evaluating micro-irrigation system performance through assessment of farmers' satisfaction: implications for adoption, longevity, and water use efficiency," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    5. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Yu, Meng & Chen, Pengpeng & Li, Yupeng & Liu, Fulai, 2022. "Optimizing the impact of film mulching pattern and nitrogen application rate on maize production, gaseous N emissions, and utilization of water and nitrogen in northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Stockle, Claudio O. & Williams, Jimmy R. & Rosenberg, Norman J. & Jones, C. Allan, 1992. "A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I--Modification of the EPIC model for climate change analysis," Agricultural Systems, Elsevier, vol. 38(3), pages 225-238.
    7. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    8. Sidhu, H.S. & Jat, M.L. & Singh, Yadvinder & Sidhu, Ravneet Kaur & Gupta, Naveen & Singh, Parvinder & Singh, Pankaj & Jat, H.S. & Gerard, Bruno, 2019. "Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 216(C), pages 273-283.
    9. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    10. Xu, Xu & Sun, Chen & Neng, Fengtian & Fu, Jing & Huang, Guanhua, 2018. "AHC: An integrated numerical model for simulating agroecosystem processes—Model description and application," Ecological Modelling, Elsevier, vol. 390(C), pages 23-39.
    11. Surendran, U. & Madhava Chandran, K., 2022. "Development and evaluation of drip irrigation and fertigation scheduling to improve water productivity and sustainable crop production using HYDRUS," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    13. Çetin, Öner & Uygan, Demet, 2008. "The effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency and net return," Agricultural Water Management, Elsevier, vol. 95(8), pages 949-958, August.
    14. Couto, A. & Ruiz Padín, A. & Reinoso, B., 2013. "Comparative yield and water use efficiency of two maize hybrids differing in maturity under solid set sprinkler and two different lateral spacing drip irrigation systems in León, Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 77-84.
    15. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    16. Groenveld, Thomas & Argaman, Amir & Šimůnek, Jiří & Lazarovitch, Naftali, 2021. "Numerical modeling to optimize nitrogen fertigation with consideration of transient drought and nitrogen stress," Agricultural Water Management, Elsevier, vol. 254(C).
    17. Luquet, Delphine & Vidal, Alain & Smith, Martin & Dauzat, Jean, 2005. "`More crop per drop': how to make it acceptable for farmers?," Agricultural Water Management, Elsevier, vol. 76(2), pages 108-119, August.
    18. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    19. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    20. Cameira, M.R. & Fernando, R.M. & Ahuja, L.R. & Ma, L., 2007. "Using RZWQM to simulate the fate of nitrogen in field soil-crop environment in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 121-136, May.
    21. Knox, J.W. & Kay, M.G. & Weatherhead, E.K., 2012. "Water regulation, crop production, and agricultural water management—Understanding farmer perspectives on irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 3-8.
    22. Westerink, Judith & Pérez-Soba, Marta & van Doorn, Anne, 2020. "Social learning and land lease to stimulate the delivery of ecosystem services in intensive arable farming," Ecosystem Services, Elsevier, vol. 44(C).
    23. Li, Changjian & Xiong, Yunwu & Cui, Zhen & Huang, Quanzhong & Xu, Xu & Han, Wenguang & Huang, Guanhua, 2020. "Effect of irrigation and fertilization regimes on grain yield, water and nitrogen productivity of mulching cultivated maize (Zea mays L.) in the Hetao Irrigation District of China," Agricultural Water Management, Elsevier, vol. 232(C).
    24. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Xiong, Lvyang & Jiang, Yao & Li, Xinyi & Ren, Dongyang & Huang, Guanhua, 2023. "Long-term regional groundwater responses and their ecological impacts under agricultural water saving in an arid irrigation district, upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 288(C).
    4. Tiago B. Ramos & Meihan Liu & Haibin Shi & Paula Paredes & Luis S. Pereira, 2024. "Leaching Efficiency During Autumn Irrigation in China’s Arid Hetao Plain as Influenced by the Depth of Shallow Saline Groundwater and Irrigation Depth, Using Data from Static Water-Table Lysimeters an," Land, MDPI, vol. 13(11), pages 1-11, October.
    5. Li, Yue & Xu, Xu & Hu, Min & Chen, Zhijun & Tan, Junwei & Liu, Liu & Xiong, Yunwu & Huang, Quanzhong & Huang, Guanhua, 2023. "Modeling water−salt−nitrogen dynamics and crop growth of saline maize farmland in Northwest China: Searching for appropriate irrigation and N fertilization strategies," Agricultural Water Management, Elsevier, vol. 282(C).
    6. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    8. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Huang, Zhenyu & Zhang, Junxiao & Ren, Dongyang & Hu, Jiaqi & Xia, Guimin & Pan, Baozhu, 2022. "Modeling and assessing water and nitrogen use and crop growth of peanut in semi-arid areas of Northeast China," Agricultural Water Management, Elsevier, vol. 267(C).
    10. Ramos, T.B. & Simionesei, L. & Jauch, E. & Almeida, C. & Neves, R., 2017. "Modelling soil water and maize growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, Portugal," Agricultural Water Management, Elsevier, vol. 185(C), pages 27-42.
    11. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    12. Xu, Xu & Sun, Chen & Neng, Fengtian & Fu, Jing & Huang, Guanhua, 2018. "AHC: An integrated numerical model for simulating agroecosystem processes—Model description and application," Ecological Modelling, Elsevier, vol. 390(C), pages 23-39.
    13. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    14. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2022. "Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh," Agricultural Water Management, Elsevier, vol. 269(C).
    15. Kaur, Lovepreet & Kaur, Anureet & Brar, A.S., 2021. "Water use efficiency of green gram (Vigna radiata L.) impacted by paddy straw mulch and irrigation regimes in north-western India," Agricultural Water Management, Elsevier, vol. 258(C).
    16. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    17. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    18. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    19. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    20. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.