IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1868-d966320.html
   My bibliography  Save this article

Effects of Surface Mulching on the Growth and Water Consumption of Maize

Author

Listed:
  • Xiangxiang Wang

    (Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    Key Laboratory of Water Pollution Control and Waste Water Resources in Anhui Province, Hefei 230601, China)

  • Zhilong Cheng

    (Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    Key Laboratory of Water Pollution Control and Waste Water Resources in Anhui Province, Hefei 230601, China)

  • Xin Cheng

    (Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    Key Laboratory of Water Pollution Control and Waste Water Resources in Anhui Province, Hefei 230601, China)

  • Quanjiu Wang

    (Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    Institute of Water Resource Research, Xian University of Technology, Xi’an 710048, China)

Abstract

This study provides understandings of the effect of mulching on the growth, development, and water consumption of dry maize. Parameters including soil temperature, soil water-filled pore space (WFPS), water storage capacity, water consumption, grain yield, water-use efficiency, and biomass yields were followed and analyzed by applying straw mulching (SM), gravel mulching (GM), and plastic film mulching (FM). The results show that the soil temperature (0–20 cm) throughout the whole observation period (2011–2013) was significantly increased by applying GM and FM, while SM reduced the soil temperature. SM increased the WFPS, while FM and GM showed no significant effect. SM and FM increased the soil water storage and water-use efficiency in the early stages of maize growth (from sowing to vegetative growth) compared with using GM. With the progress of time, fewer differences between all treatments were observed. Water consumption of the three treatments was in the order of SM < FM < GM, indicating that SM was the most effective in preventing water evaporation. The resulting yields of corn also varied. Compared with the control, FM significantly increased the yields by 1.7, 0.5, and 2.2 ton/ha in the tested three years, respectively. In contrast, GM showed no significant difference in the three years, and SM showed no significant difference in 2011 and 2012 but increased the yield by 2.2 ton/ha in 2013. FM is shown to be an effective method for increasing the yields of corn for the studied region, GM is not recommended, and SM is the most effective in improving the water availability in the soil, while its effect on corn yields needs to be further explored.

Suggested Citation

  • Xiangxiang Wang & Zhilong Cheng & Xin Cheng & Quanjiu Wang, 2022. "Effects of Surface Mulching on the Growth and Water Consumption of Maize," Agriculture, MDPI, vol. 12(11), pages 1-12, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1868-:d:966320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Qiang & Dang, Tinghui & Guo, Shengli & Hao, Mingde, 2019. "Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau," Agricultural Water Management, Elsevier, vol. 213(C), pages 803-808.
    2. Wang, Hong & Wang, Chenbing & Zhao, Xiumei & Wang, Falin, 2015. "Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 154(C), pages 20-28.
    3. Wang, Shulan & Wang, Hao & Zhang, Yuanhong & Wang, Rui & Zhang, Yujiao & Xu, Zonggui & Jia, Guangcan & Wang, Xiaoli & Li, Jun, 2018. "The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 376-384.
    4. Qin, Xiaoliang & Huang, Tiantian & Lu, Chen & Dang, Pengfei & Zhang, Miaomiao & Guan, Xiao-kang & Wen, Peng-fei & Wang, Tong-Chao & Chen, Yinglong & Siddique, Kadambot H.M., 2021. "Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    6. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    7. Sun, Tao & Li, Geng & Ning, Tang-Yuan & Zhang, Zhi-Meng & Mi, Qing-Hua & Lal, Rattan, 2018. "Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut," Agricultural Water Management, Elsevier, vol. 208(C), pages 214-223.
    8. Fang, Qin & Wang, Yanzhe & Uwimpaye, Fasilate & Yan, Zongzheng & Li, Lu & Liu, Xiuwei & Shao, Liwei, 2021. "Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Xie, Zhong-kui & Wang, Ya-jun & Li, Feng-min, 2005. "Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China," Agricultural Water Management, Elsevier, vol. 75(1), pages 71-83, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    2. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    3. Hou, Xianqing & Li, Rong, 2019. "Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Yang, Jian & Mao, Xiaomin & Wang, Kai & Yang, Weicai, 2018. "The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 232-245.
    6. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    7. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    8. Dong, Baodi & Liu, Mengyu & Jiang, Jingwei & Shi, Changhai & Wang, Xiaoming & Qiao, Yunzhou & Liu, Yueyan & Zhao, Zhihai & li, Dongxiao & Si, Fuyan, 2014. "Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields," Agricultural Water Management, Elsevier, vol. 143(C), pages 93-101.
    9. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    10. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    11. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    12. Zhang, Xucheng & Wang, Hongli & Hou, Huizhi & Yu, Xianfeng & Ma, Yifan & Fang, Yanjie & Lei, Kangning, 2020. "Did plastic mulching constantly increase crop yield but decrease soil water in a semiarid rain-fed area?," Agricultural Water Management, Elsevier, vol. 241(C).
    13. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Zhang, Shibo & Zhang, Guixin & Xia, Zhenqing & Wu, Mengke & Bai, Jingxuan & Lu, Haidong, 2022. "Optimizing plastic mulching improves the growth and increases grain yield and water use efficiency of spring maize in dryland of the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 271(C).
    15. Liyuan Bo & Xiaomin Mao & Yali Wang, 2022. "Assessing the Applicability of Biodegradable Film Mulching in Northwest China Based on Comprehensive Benefits Study," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    16. Chai, Yuwei & Chai, Qiang & Yang, Changgang & Chen, Yuzhang & Li, Rui & Li, Yawei & Chang, Lei & Lan, Xuemei & Cheng, Hongbo & Chai, Shouxi, 2022. "Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Fangyuan, Huang & Daur, Ihsanullah & Wei, Ting & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "The ridge furrow cropping technique indirectly improves seed filling endogenous hormonal changes and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 138-148.
    18. Wen, Yeqiang & Shang, Songhao & Yang, Jian, 2017. "Optimization of irrigation scheduling for spring wheat with mulching and limited irrigation water in an arid climate," Agricultural Water Management, Elsevier, vol. 192(C), pages 33-44.
    19. Ding, Dianyuan & Zhao, Ying & Feng, Hao & Hill, Robert Lee & Chu, Xiaosheng & Zhang, Tibin & He, Jianqiang, 2018. "Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 201(C), pages 246-257.
    20. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?," Agricultural Water Management, Elsevier, vol. 190(C), pages 1-5.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1868-:d:966320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.