IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421006971.html
   My bibliography  Save this article

Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China

Author

Listed:
  • Chai, Yuwei
  • Chai, Qiang
  • Yang, Changgang
  • Chen, Yuzhang
  • Li, Rui
  • Li, Yawei
  • Chang, Lei
  • Lan, Xuemei
  • Cheng, Hongbo
  • Chai, Shouxi

Abstract

Whole-ground plastic film mulching with thin soil mulching above the film (PMS) and no mulching (NM) are the two dominant planting patterns for winter wheat in the semiarid rain-fed region (mean annual precipitation <450 mm) of Northwest China. In this study, differences in water consumption and production performance between PMS and NM were analyzed, as well as reasons for differences in wheat yield, in 24 field experiments conducted from 2008 to 2019 at three sites. Compared with NM, PMS had higher average grain yield (23.2%), crop water productivity based on grain yield (25.6%), and net income (603 ¥ ha−1) across all 24 experiments. In PMS, yield stability also improved under different environments. Yield differences between planting patterns and among environments primarily depended on differences in spike number ha−1. Average consumption of pre-sowing stored water in soil from 0 to 200 cm in PMS and NM accounted for 38% and 35%, respectively, of total evapotranspiration (ET). In early (sowing–jointing), middle (jointing–flowering), and late (flowering–maturity) phases, average water consumption in PMS was 36.4%, 39.3%, and 24.3%, respectively. In the middle phase, PMS increased water consumption by 29 mm and the proportion of water consumption relative to total ET by 5.6% compared with NM. In early and late phases, water consumption was similar in PMS and NM. Increased water consumption in the middle phase could increase vegetative growth and sink capacity (grain yield ha−1). ET, yield, and vegetative growth were highly positively correlated with one another. Compared with NM, PMS significantly increased yield and crop water productivity by maximizing transpiration, increasing water consumption in the middle phase, and improving use of pre-sowing stored water. In conclusion, PMS is suitable to cultivate wheat for improving water productivity and economic benefits in the semiarid rain-fed agricultural region of Northwest China.

Suggested Citation

  • Chai, Yuwei & Chai, Qiang & Yang, Changgang & Chen, Yuzhang & Li, Rui & Li, Yawei & Chang, Lei & Lan, Xuemei & Cheng, Hongbo & Chai, Shouxi, 2022. "Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006971
    DOI: 10.1016/j.agwat.2021.107420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Chakraborty, Debashis & Garg, R.N. & Tomar, R.K. & Singh, Ravender & Sharma, S.K. & Singh, R.K. & Trivedi, S.M. & Mittal, R.B. & Sharma, P.K. & Kamble, K.H., 2010. "Synthetic and organic mulching and nitrogen effect on winter wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 97(5), pages 738-748, May.
    3. Yu, Shaobo & Khan, Shahbaz & Mo, Fei & Ren, Aixia & Lin, Wen & Feng, Yu & Dong, Shifeng & Ren, Jie & Wang, Wenxiang & Noor, Hafeez & Yang, Zhenping & Sun, Min & Gao, Zhiqiang, 2021. "Determining optimal nitrogen input rate on the base of fallow season precipitation to achieve higher crop water productivity and yield," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Ma, Dedi & Chen, Lei & Qu, Hongchao & Wang, Yilin & Misselbrook, Tom & Jiang, Rui, 2018. "Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 202(C), pages 166-173.
    5. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J. & Tian, X.H., 2013. "Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China," Agricultural Water Management, Elsevier, vol. 116(C), pages 39-49.
    6. Li-fang Wang & Juan Chen & Zhou-ping Shangguan, 2015. "Yield Responses of Wheat to Mulching Practices in Dryland Farming on the Loess Plateau," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    7. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ma, Xiangcheng & Ahmad, Irshad & Adnan, Muhammad & Gerard, Rushingabigwi & Ren, Xiaolong & Zhang, Peng & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2018. "Interactive effects of plastic film mulching with supplemental irrigation on winter wheat photosynthesis, chlorophyll fluorescence and yield under simulated precipitation conditions," Agricultural Water Management, Elsevier, vol. 207(C), pages 1-14.
    8. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    9. Yang, Jian & Mao, Xiaomin & Wang, Kai & Yang, Weicai, 2018. "The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 232-245.
    10. Xie, Zhong-kui & Wang, Ya-jun & Li, Feng-min, 2005. "Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China," Agricultural Water Management, Elsevier, vol. 75(1), pages 71-83, July.
    11. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
    12. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    13. Daozhi Gong & Weiping Hao & Xurong Mei & Xiang Gao & Qi Liu & Kelly Caylor, 2015. "Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-20, August.
    14. Balwinder-Singh & Eberbach, P.L. & Humphreys, E. & Kukal, S.S., 2011. "The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India," Agricultural Water Management, Elsevier, vol. 98(12), pages 1847-1855, October.
    15. Zhang, Peng & Wei, Ting & Han, Qingfang & Ren, Xiaolong & Jia, Zhikuan, 2020. "Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China," Agricultural Water Management, Elsevier, vol. 241(C).
    16. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    17. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    18. Yang, Yonghui & Ding, Jinli & Zhang, Yunhong & Wu, Jicheng & Zhang, Jiemei & Pan, Xiaoying & Gao, Cuimin & Wang, Yue & He, Fang, 2018. "Effects of tillage and mulching measures on soil moisture and temperature, photosynthetic characteristics and yield of winter wheat," Agricultural Water Management, Elsevier, vol. 201(C), pages 299-308.
    19. Yan, Qiuyan & Dong, Fei & Yang, Feng & Lu, Jinxiu & Li, Feng & Zhang, Jiancheng & Dong, Jinlong & Li, Junhui, 2019. "Improved yield and water storage of the wheat-maize rotation system due to double-blank row mulching during the wheat stage," Agricultural Water Management, Elsevier, vol. 213(C), pages 903-912.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Liangang & Wei, Xi & Wang, Chunying & Zhao, Rongqin, 2023. "Plastic film mulching significantly boosts crop production and water use efficiency but not evapotranspiration in China," Agricultural Water Management, Elsevier, vol. 275(C).
    2. Cai, Wenjing & Gu, Xiaobo & Du, Yadan & Chang, Tian & Lu, Shiyu & Zheng, Xiaobo & Bai, Dongping & Song, Hui & Sun, Shikun & Cai, Huanjie, 2022. "Effects of mulching on water saving, yield increase and emission reduction for maize in China," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Lv, Shenqiang & Li, Jia & Yang, Zeyu & Yang, Ting & Li, Huitong & Wang, Xiaofei & Peng, Yi & Zhou, Chunju & Wang, Linquan & Abdo, Ahmed I., 2023. "The field mulching could improve sustainability of spring maize production on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Yang, Jianjun & Tan, Weijun & Han, Jingren & Li, Feng-Min & Zhang, Feng, 2022. "Distribution pattern of rainwater in soil under vertical deep rotary tillage in dryland farmland," Agricultural Water Management, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Huan & Fan, Jun & Fu, Wei & Du, Mengge & Zhou, Gu & Zhou, Mingxing & Hao, Mingde & Shao, Ming'an, 2022. "Good harvests of winter wheat from stored soil water and improved temperature during fallow period by plastic film mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Li, Rui & Chai, Shouxi & Chai, Yuwei & Li, Yawei & Lan, Xuemei & Ma, Jiantao & Cheng, Hongbo & Chang, Lei, 2021. "Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 254(C).
    3. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Fu, Wei & Fan, Jun & Hao, Mingde & Hu, Jinsheng & Wang, Huan, 2021. "Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    8. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    9. Mukherjee, A. & Sarkar, S. & Chakraborty, P.K., 2012. "Marginal analysis of water productivity function of tomato crop grown under different irrigation regimes and mulch managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 121-127.
    10. Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
    11. Amin, M.G. Mostofa & Mahbub, S.M. Mubtasim & Hasan, Md. Moudud & Pervin, Wafa & Sharmin, Jinat & Hossain, Md. Delwar, 2023. "Plant–water relations in subtropical maize fields under mulching and organic fertilization," Agricultural Water Management, Elsevier, vol. 286(C).
    12. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Ding, Jinli & Wu, Jicheng & Ding, Dianyuan & Yang, Yonghui & Gao, Cuimin & Hu, Wei, 2021. "Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system," Agricultural Water Management, Elsevier, vol. 254(C).
    14. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    15. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    16. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    17. Yan, Qiuyan & Dong, Fei & Yang, Feng & Lu, Jinxiu & Li, Feng & Zhang, Jiancheng & Dong, Jinlong & Li, Junhui, 2019. "Improved yield and water storage of the wheat-maize rotation system due to double-blank row mulching during the wheat stage," Agricultural Water Management, Elsevier, vol. 213(C), pages 903-912.
    18. Kader, M.A. & Nakamura, K. & Senge, M. & Mojid, M.A. & Kawashima, S., 2019. "Soil hydro-thermal regimes and water use efficiency of rain-fed soybean (Glycine max) as affected by organic mulches," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Xing Wang & Hailong Sun & Changming Tan & Xiaowen Wang & Min Xia, 2021. "Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    20. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.